Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion

Designing organic charge‐transfer (CT) cocrystals for efficient solar‐thermal conversion is a long‐sought goal but remains challenging. Here we construct a unique CT cocrystal by using a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) as the electron accepto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-05, Vol.61 (21), p.e202202571-n/a
Hauptverfasser: Xu, Jieqiong, Chen, Qian, Li, Shengkai, Shen, Jiachao, Keoingthong, Phouphien, Zhang, Liang, Yin, Zhiwei, Cai, Xinqi, Chen, Zhuo, Tan, Weihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page e202202571
container_title Angewandte Chemie International Edition
container_volume 61
creator Xu, Jieqiong
Chen, Qian
Li, Shengkai
Shen, Jiachao
Keoingthong, Phouphien
Zhang, Liang
Yin, Zhiwei
Cai, Xinqi
Chen, Zhuo
Tan, Weihong
description Designing organic charge‐transfer (CT) cocrystals for efficient solar‐thermal conversion is a long‐sought goal but remains challenging. Here we construct a unique CT cocrystal by using a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) as the electron acceptor. The strong persistency and electron affinity of ABTS+. endow a high degree of electron delocalization between ABTS+. and the 3,3′,5,5′‐tetramethylbenzidine donor. Together with the intrinsic long‐wavelength absorption of ABTS+., the synthesized cocrystal can effectively capture the full solar spectrum and show distinguished photothermal efficiency. Such a cocrystal is further used for solar‐driven interfacial evaporation, and a high evaporation rate of 1.407 kg m−2 h−1 and a remarkable solar‐to‐vapor efficiency of 97.0 % have been achieved upon 1 sun irradiation. This work indicates the enormous prospects for charge transfer‐based functional materials through rational radical cation engineering. A unique charge‐transfer cocrystal is constructed via a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) electron acceptor. The strong electron affinity and long‐wavelength absorption of ABTS+. enable the resultant cocrystal with a full solar spectrum absorption, which yields an evaporation rate of 1.407 kg m−2 h−1 and a solar‐to‐vapor efficiency of 97.0 % in solar‐driven interfacial evaporation.
doi_str_mv 10.1002/anie.202202571
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2638014154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638014154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3031-55ce004fdc5ddbaa731d6445411902772f2de65abe4a056ea2bf3665158dfca93</originalsourceid><addsrcrecordid>eNqF0U1LHDEYB_BQLPWlvfZYBrx4mTXvM3Nchq0KokXteXg286RGZibbZNayNz-Cn9FPYoa1Cl6EhATyy5-QPyHfGZ0xSvkxDA5nnPI0VME-kT2mOMtFUYidtJdC5EWp2C7Zj_Eu-bKk-gvZFYprzXW1R_r6FsIffHp4vAkwRIshq70JmzhCl907yCD7hSG6OOIwZlfQOpMOahidH7K5MbgafchsmgtrnXGTuvYdhCnxFkM_aT_cTxl--Eo-W-gifntZD8jvn4ub-jQ_vzw5q-fnuRFUsFwpg5RK2xrVtkuAQrBWS6kkYxXlRcEtb1ErWKIEqjQCX1qhtWKqbK2BShyQo23uKvi_a4xj07tosOtgQL-ODdeipEwyJRM9fEfv_DoM6XVJaVpJzShParZVJvgYA9pmFVwPYdMw2kxFNFMRzWsR6cKPl9j1ssf2lf__-QSqLfjnOtx8ENfML84Wb-HPr86WyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660946102</pqid></control><display><type>article</type><title>Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion</title><source>Wiley Online Library All Journals</source><creator>Xu, Jieqiong ; Chen, Qian ; Li, Shengkai ; Shen, Jiachao ; Keoingthong, Phouphien ; Zhang, Liang ; Yin, Zhiwei ; Cai, Xinqi ; Chen, Zhuo ; Tan, Weihong</creator><creatorcontrib>Xu, Jieqiong ; Chen, Qian ; Li, Shengkai ; Shen, Jiachao ; Keoingthong, Phouphien ; Zhang, Liang ; Yin, Zhiwei ; Cai, Xinqi ; Chen, Zhuo ; Tan, Weihong</creatorcontrib><description>Designing organic charge‐transfer (CT) cocrystals for efficient solar‐thermal conversion is a long‐sought goal but remains challenging. Here we construct a unique CT cocrystal by using a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) as the electron acceptor. The strong persistency and electron affinity of ABTS+. endow a high degree of electron delocalization between ABTS+. and the 3,3′,5,5′‐tetramethylbenzidine donor. Together with the intrinsic long‐wavelength absorption of ABTS+., the synthesized cocrystal can effectively capture the full solar spectrum and show distinguished photothermal efficiency. Such a cocrystal is further used for solar‐driven interfacial evaporation, and a high evaporation rate of 1.407 kg m−2 h−1 and a remarkable solar‐to‐vapor efficiency of 97.0 % have been achieved upon 1 sun irradiation. This work indicates the enormous prospects for charge transfer‐based functional materials through rational radical cation engineering. A unique charge‐transfer cocrystal is constructed via a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) electron acceptor. The strong electron affinity and long‐wavelength absorption of ABTS+. enable the resultant cocrystal with a full solar spectrum absorption, which yields an evaporation rate of 1.407 kg m−2 h−1 and a solar‐to‐vapor efficiency of 97.0 % in solar‐driven interfacial evaporation.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202202571</identifier><identifier>PMID: 35266269</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cations ; Charge materials ; Charge Transfer ; Cocrystals ; Electron affinity ; Electrons ; Evaporation ; Evaporation rate ; Functional materials ; Irradiation ; Photothermal Conversion ; Radiation ; Radical Cations ; Solar-Driven Water Evaporation ; Sulfonic acid</subject><ispartof>Angewandte Chemie International Edition, 2022-05, Vol.61 (21), p.e202202571-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3031-55ce004fdc5ddbaa731d6445411902772f2de65abe4a056ea2bf3665158dfca93</citedby><cites>FETCH-LOGICAL-c3031-55ce004fdc5ddbaa731d6445411902772f2de65abe4a056ea2bf3665158dfca93</cites><orcidid>0000-0002-9943-2262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202202571$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202202571$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35266269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jieqiong</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Li, Shengkai</creatorcontrib><creatorcontrib>Shen, Jiachao</creatorcontrib><creatorcontrib>Keoingthong, Phouphien</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Yin, Zhiwei</creatorcontrib><creatorcontrib>Cai, Xinqi</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><title>Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Designing organic charge‐transfer (CT) cocrystals for efficient solar‐thermal conversion is a long‐sought goal but remains challenging. Here we construct a unique CT cocrystal by using a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) as the electron acceptor. The strong persistency and electron affinity of ABTS+. endow a high degree of electron delocalization between ABTS+. and the 3,3′,5,5′‐tetramethylbenzidine donor. Together with the intrinsic long‐wavelength absorption of ABTS+., the synthesized cocrystal can effectively capture the full solar spectrum and show distinguished photothermal efficiency. Such a cocrystal is further used for solar‐driven interfacial evaporation, and a high evaporation rate of 1.407 kg m−2 h−1 and a remarkable solar‐to‐vapor efficiency of 97.0 % have been achieved upon 1 sun irradiation. This work indicates the enormous prospects for charge transfer‐based functional materials through rational radical cation engineering. A unique charge‐transfer cocrystal is constructed via a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) electron acceptor. The strong electron affinity and long‐wavelength absorption of ABTS+. enable the resultant cocrystal with a full solar spectrum absorption, which yields an evaporation rate of 1.407 kg m−2 h−1 and a solar‐to‐vapor efficiency of 97.0 % in solar‐driven interfacial evaporation.</description><subject>Cations</subject><subject>Charge materials</subject><subject>Charge Transfer</subject><subject>Cocrystals</subject><subject>Electron affinity</subject><subject>Electrons</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Functional materials</subject><subject>Irradiation</subject><subject>Photothermal Conversion</subject><subject>Radiation</subject><subject>Radical Cations</subject><subject>Solar-Driven Water Evaporation</subject><subject>Sulfonic acid</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LHDEYB_BQLPWlvfZYBrx4mTXvM3Nchq0KokXteXg286RGZibbZNayNz-Cn9FPYoa1Cl6EhATyy5-QPyHfGZ0xSvkxDA5nnPI0VME-kT2mOMtFUYidtJdC5EWp2C7Zj_Eu-bKk-gvZFYprzXW1R_r6FsIffHp4vAkwRIshq70JmzhCl907yCD7hSG6OOIwZlfQOpMOahidH7K5MbgafchsmgtrnXGTuvYdhCnxFkM_aT_cTxl--Eo-W-gifntZD8jvn4ub-jQ_vzw5q-fnuRFUsFwpg5RK2xrVtkuAQrBWS6kkYxXlRcEtb1ErWKIEqjQCX1qhtWKqbK2BShyQo23uKvi_a4xj07tosOtgQL-ODdeipEwyJRM9fEfv_DoM6XVJaVpJzShParZVJvgYA9pmFVwPYdMw2kxFNFMRzWsR6cKPl9j1ssf2lf__-QSqLfjnOtx8ENfML84Wb-HPr86WyA</recordid><startdate>20220516</startdate><enddate>20220516</enddate><creator>Xu, Jieqiong</creator><creator>Chen, Qian</creator><creator>Li, Shengkai</creator><creator>Shen, Jiachao</creator><creator>Keoingthong, Phouphien</creator><creator>Zhang, Liang</creator><creator>Yin, Zhiwei</creator><creator>Cai, Xinqi</creator><creator>Chen, Zhuo</creator><creator>Tan, Weihong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9943-2262</orcidid></search><sort><creationdate>20220516</creationdate><title>Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion</title><author>Xu, Jieqiong ; Chen, Qian ; Li, Shengkai ; Shen, Jiachao ; Keoingthong, Phouphien ; Zhang, Liang ; Yin, Zhiwei ; Cai, Xinqi ; Chen, Zhuo ; Tan, Weihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3031-55ce004fdc5ddbaa731d6445411902772f2de65abe4a056ea2bf3665158dfca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cations</topic><topic>Charge materials</topic><topic>Charge Transfer</topic><topic>Cocrystals</topic><topic>Electron affinity</topic><topic>Electrons</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Functional materials</topic><topic>Irradiation</topic><topic>Photothermal Conversion</topic><topic>Radiation</topic><topic>Radical Cations</topic><topic>Solar-Driven Water Evaporation</topic><topic>Sulfonic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jieqiong</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Li, Shengkai</creatorcontrib><creatorcontrib>Shen, Jiachao</creatorcontrib><creatorcontrib>Keoingthong, Phouphien</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Yin, Zhiwei</creatorcontrib><creatorcontrib>Cai, Xinqi</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jieqiong</au><au>Chen, Qian</au><au>Li, Shengkai</au><au>Shen, Jiachao</au><au>Keoingthong, Phouphien</au><au>Zhang, Liang</au><au>Yin, Zhiwei</au><au>Cai, Xinqi</au><au>Chen, Zhuo</au><au>Tan, Weihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-05-16</date><risdate>2022</risdate><volume>61</volume><issue>21</issue><spage>e202202571</spage><epage>n/a</epage><pages>e202202571-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Designing organic charge‐transfer (CT) cocrystals for efficient solar‐thermal conversion is a long‐sought goal but remains challenging. Here we construct a unique CT cocrystal by using a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) as the electron acceptor. The strong persistency and electron affinity of ABTS+. endow a high degree of electron delocalization between ABTS+. and the 3,3′,5,5′‐tetramethylbenzidine donor. Together with the intrinsic long‐wavelength absorption of ABTS+., the synthesized cocrystal can effectively capture the full solar spectrum and show distinguished photothermal efficiency. Such a cocrystal is further used for solar‐driven interfacial evaporation, and a high evaporation rate of 1.407 kg m−2 h−1 and a remarkable solar‐to‐vapor efficiency of 97.0 % have been achieved upon 1 sun irradiation. This work indicates the enormous prospects for charge transfer‐based functional materials through rational radical cation engineering. A unique charge‐transfer cocrystal is constructed via a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) electron acceptor. The strong electron affinity and long‐wavelength absorption of ABTS+. enable the resultant cocrystal with a full solar spectrum absorption, which yields an evaporation rate of 1.407 kg m−2 h−1 and a solar‐to‐vapor efficiency of 97.0 % in solar‐driven interfacial evaporation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35266269</pmid><doi>10.1002/anie.202202571</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9943-2262</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-05, Vol.61 (21), p.e202202571-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2638014154
source Wiley Online Library All Journals
subjects Cations
Charge materials
Charge Transfer
Cocrystals
Electron affinity
Electrons
Evaporation
Evaporation rate
Functional materials
Irradiation
Photothermal Conversion
Radiation
Radical Cations
Solar-Driven Water Evaporation
Sulfonic acid
title Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%E2%80%90Transfer%20Cocrystal%20via%20a%20Persistent%20Radical%20Cation%20Acceptor%20for%20Efficient%20Solar%E2%80%90Thermal%20Conversion&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Xu,%20Jieqiong&rft.date=2022-05-16&rft.volume=61&rft.issue=21&rft.spage=e202202571&rft.epage=n/a&rft.pages=e202202571-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202202571&rft_dat=%3Cproquest_cross%3E2638014154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660946102&rft_id=info:pmid/35266269&rfr_iscdi=true