Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion
Designing organic charge‐transfer (CT) cocrystals for efficient solar‐thermal conversion is a long‐sought goal but remains challenging. Here we construct a unique CT cocrystal by using a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) as the electron accepto...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-05, Vol.61 (21), p.e202202571-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | e202202571 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Xu, Jieqiong Chen, Qian Li, Shengkai Shen, Jiachao Keoingthong, Phouphien Zhang, Liang Yin, Zhiwei Cai, Xinqi Chen, Zhuo Tan, Weihong |
description | Designing organic charge‐transfer (CT) cocrystals for efficient solar‐thermal conversion is a long‐sought goal but remains challenging. Here we construct a unique CT cocrystal by using a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) as the electron acceptor. The strong persistency and electron affinity of ABTS+. endow a high degree of electron delocalization between ABTS+. and the 3,3′,5,5′‐tetramethylbenzidine donor. Together with the intrinsic long‐wavelength absorption of ABTS+., the synthesized cocrystal can effectively capture the full solar spectrum and show distinguished photothermal efficiency. Such a cocrystal is further used for solar‐driven interfacial evaporation, and a high evaporation rate of 1.407 kg m−2 h−1 and a remarkable solar‐to‐vapor efficiency of 97.0 % have been achieved upon 1 sun irradiation. This work indicates the enormous prospects for charge transfer‐based functional materials through rational radical cation engineering.
A unique charge‐transfer cocrystal is constructed via a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) electron acceptor. The strong electron affinity and long‐wavelength absorption of ABTS+. enable the resultant cocrystal with a full solar spectrum absorption, which yields an evaporation rate of 1.407 kg m−2 h−1 and a solar‐to‐vapor efficiency of 97.0 % in solar‐driven interfacial evaporation. |
doi_str_mv | 10.1002/anie.202202571 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2638014154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638014154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3031-55ce004fdc5ddbaa731d6445411902772f2de65abe4a056ea2bf3665158dfca93</originalsourceid><addsrcrecordid>eNqF0U1LHDEYB_BQLPWlvfZYBrx4mTXvM3Nchq0KokXteXg286RGZibbZNayNz-Cn9FPYoa1Cl6EhATyy5-QPyHfGZ0xSvkxDA5nnPI0VME-kT2mOMtFUYidtJdC5EWp2C7Zj_Eu-bKk-gvZFYprzXW1R_r6FsIffHp4vAkwRIshq70JmzhCl907yCD7hSG6OOIwZlfQOpMOahidH7K5MbgafchsmgtrnXGTuvYdhCnxFkM_aT_cTxl--Eo-W-gifntZD8jvn4ub-jQ_vzw5q-fnuRFUsFwpg5RK2xrVtkuAQrBWS6kkYxXlRcEtb1ErWKIEqjQCX1qhtWKqbK2BShyQo23uKvi_a4xj07tosOtgQL-ODdeipEwyJRM9fEfv_DoM6XVJaVpJzShParZVJvgYA9pmFVwPYdMw2kxFNFMRzWsR6cKPl9j1ssf2lf__-QSqLfjnOtx8ENfML84Wb-HPr86WyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660946102</pqid></control><display><type>article</type><title>Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion</title><source>Wiley Online Library All Journals</source><creator>Xu, Jieqiong ; Chen, Qian ; Li, Shengkai ; Shen, Jiachao ; Keoingthong, Phouphien ; Zhang, Liang ; Yin, Zhiwei ; Cai, Xinqi ; Chen, Zhuo ; Tan, Weihong</creator><creatorcontrib>Xu, Jieqiong ; Chen, Qian ; Li, Shengkai ; Shen, Jiachao ; Keoingthong, Phouphien ; Zhang, Liang ; Yin, Zhiwei ; Cai, Xinqi ; Chen, Zhuo ; Tan, Weihong</creatorcontrib><description>Designing organic charge‐transfer (CT) cocrystals for efficient solar‐thermal conversion is a long‐sought goal but remains challenging. Here we construct a unique CT cocrystal by using a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) as the electron acceptor. The strong persistency and electron affinity of ABTS+. endow a high degree of electron delocalization between ABTS+. and the 3,3′,5,5′‐tetramethylbenzidine donor. Together with the intrinsic long‐wavelength absorption of ABTS+., the synthesized cocrystal can effectively capture the full solar spectrum and show distinguished photothermal efficiency. Such a cocrystal is further used for solar‐driven interfacial evaporation, and a high evaporation rate of 1.407 kg m−2 h−1 and a remarkable solar‐to‐vapor efficiency of 97.0 % have been achieved upon 1 sun irradiation. This work indicates the enormous prospects for charge transfer‐based functional materials through rational radical cation engineering.
A unique charge‐transfer cocrystal is constructed via a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) electron acceptor. The strong electron affinity and long‐wavelength absorption of ABTS+. enable the resultant cocrystal with a full solar spectrum absorption, which yields an evaporation rate of 1.407 kg m−2 h−1 and a solar‐to‐vapor efficiency of 97.0 % in solar‐driven interfacial evaporation.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202202571</identifier><identifier>PMID: 35266269</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cations ; Charge materials ; Charge Transfer ; Cocrystals ; Electron affinity ; Electrons ; Evaporation ; Evaporation rate ; Functional materials ; Irradiation ; Photothermal Conversion ; Radiation ; Radical Cations ; Solar-Driven Water Evaporation ; Sulfonic acid</subject><ispartof>Angewandte Chemie International Edition, 2022-05, Vol.61 (21), p.e202202571-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3031-55ce004fdc5ddbaa731d6445411902772f2de65abe4a056ea2bf3665158dfca93</citedby><cites>FETCH-LOGICAL-c3031-55ce004fdc5ddbaa731d6445411902772f2de65abe4a056ea2bf3665158dfca93</cites><orcidid>0000-0002-9943-2262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202202571$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202202571$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35266269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jieqiong</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Li, Shengkai</creatorcontrib><creatorcontrib>Shen, Jiachao</creatorcontrib><creatorcontrib>Keoingthong, Phouphien</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Yin, Zhiwei</creatorcontrib><creatorcontrib>Cai, Xinqi</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><title>Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Designing organic charge‐transfer (CT) cocrystals for efficient solar‐thermal conversion is a long‐sought goal but remains challenging. Here we construct a unique CT cocrystal by using a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) as the electron acceptor. The strong persistency and electron affinity of ABTS+. endow a high degree of electron delocalization between ABTS+. and the 3,3′,5,5′‐tetramethylbenzidine donor. Together with the intrinsic long‐wavelength absorption of ABTS+., the synthesized cocrystal can effectively capture the full solar spectrum and show distinguished photothermal efficiency. Such a cocrystal is further used for solar‐driven interfacial evaporation, and a high evaporation rate of 1.407 kg m−2 h−1 and a remarkable solar‐to‐vapor efficiency of 97.0 % have been achieved upon 1 sun irradiation. This work indicates the enormous prospects for charge transfer‐based functional materials through rational radical cation engineering.
A unique charge‐transfer cocrystal is constructed via a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) electron acceptor. The strong electron affinity and long‐wavelength absorption of ABTS+. enable the resultant cocrystal with a full solar spectrum absorption, which yields an evaporation rate of 1.407 kg m−2 h−1 and a solar‐to‐vapor efficiency of 97.0 % in solar‐driven interfacial evaporation.</description><subject>Cations</subject><subject>Charge materials</subject><subject>Charge Transfer</subject><subject>Cocrystals</subject><subject>Electron affinity</subject><subject>Electrons</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Functional materials</subject><subject>Irradiation</subject><subject>Photothermal Conversion</subject><subject>Radiation</subject><subject>Radical Cations</subject><subject>Solar-Driven Water Evaporation</subject><subject>Sulfonic acid</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LHDEYB_BQLPWlvfZYBrx4mTXvM3Nchq0KokXteXg286RGZibbZNayNz-Cn9FPYoa1Cl6EhATyy5-QPyHfGZ0xSvkxDA5nnPI0VME-kT2mOMtFUYidtJdC5EWp2C7Zj_Eu-bKk-gvZFYprzXW1R_r6FsIffHp4vAkwRIshq70JmzhCl907yCD7hSG6OOIwZlfQOpMOahidH7K5MbgafchsmgtrnXGTuvYdhCnxFkM_aT_cTxl--Eo-W-gifntZD8jvn4ub-jQ_vzw5q-fnuRFUsFwpg5RK2xrVtkuAQrBWS6kkYxXlRcEtb1ErWKIEqjQCX1qhtWKqbK2BShyQo23uKvi_a4xj07tosOtgQL-ODdeipEwyJRM9fEfv_DoM6XVJaVpJzShParZVJvgYA9pmFVwPYdMw2kxFNFMRzWsR6cKPl9j1ssf2lf__-QSqLfjnOtx8ENfML84Wb-HPr86WyA</recordid><startdate>20220516</startdate><enddate>20220516</enddate><creator>Xu, Jieqiong</creator><creator>Chen, Qian</creator><creator>Li, Shengkai</creator><creator>Shen, Jiachao</creator><creator>Keoingthong, Phouphien</creator><creator>Zhang, Liang</creator><creator>Yin, Zhiwei</creator><creator>Cai, Xinqi</creator><creator>Chen, Zhuo</creator><creator>Tan, Weihong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9943-2262</orcidid></search><sort><creationdate>20220516</creationdate><title>Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion</title><author>Xu, Jieqiong ; Chen, Qian ; Li, Shengkai ; Shen, Jiachao ; Keoingthong, Phouphien ; Zhang, Liang ; Yin, Zhiwei ; Cai, Xinqi ; Chen, Zhuo ; Tan, Weihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3031-55ce004fdc5ddbaa731d6445411902772f2de65abe4a056ea2bf3665158dfca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cations</topic><topic>Charge materials</topic><topic>Charge Transfer</topic><topic>Cocrystals</topic><topic>Electron affinity</topic><topic>Electrons</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Functional materials</topic><topic>Irradiation</topic><topic>Photothermal Conversion</topic><topic>Radiation</topic><topic>Radical Cations</topic><topic>Solar-Driven Water Evaporation</topic><topic>Sulfonic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jieqiong</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Li, Shengkai</creatorcontrib><creatorcontrib>Shen, Jiachao</creatorcontrib><creatorcontrib>Keoingthong, Phouphien</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Yin, Zhiwei</creatorcontrib><creatorcontrib>Cai, Xinqi</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jieqiong</au><au>Chen, Qian</au><au>Li, Shengkai</au><au>Shen, Jiachao</au><au>Keoingthong, Phouphien</au><au>Zhang, Liang</au><au>Yin, Zhiwei</au><au>Cai, Xinqi</au><au>Chen, Zhuo</au><au>Tan, Weihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-05-16</date><risdate>2022</risdate><volume>61</volume><issue>21</issue><spage>e202202571</spage><epage>n/a</epage><pages>e202202571-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Designing organic charge‐transfer (CT) cocrystals for efficient solar‐thermal conversion is a long‐sought goal but remains challenging. Here we construct a unique CT cocrystal by using a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) as the electron acceptor. The strong persistency and electron affinity of ABTS+. endow a high degree of electron delocalization between ABTS+. and the 3,3′,5,5′‐tetramethylbenzidine donor. Together with the intrinsic long‐wavelength absorption of ABTS+., the synthesized cocrystal can effectively capture the full solar spectrum and show distinguished photothermal efficiency. Such a cocrystal is further used for solar‐driven interfacial evaporation, and a high evaporation rate of 1.407 kg m−2 h−1 and a remarkable solar‐to‐vapor efficiency of 97.0 % have been achieved upon 1 sun irradiation. This work indicates the enormous prospects for charge transfer‐based functional materials through rational radical cation engineering.
A unique charge‐transfer cocrystal is constructed via a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) electron acceptor. The strong electron affinity and long‐wavelength absorption of ABTS+. enable the resultant cocrystal with a full solar spectrum absorption, which yields an evaporation rate of 1.407 kg m−2 h−1 and a solar‐to‐vapor efficiency of 97.0 % in solar‐driven interfacial evaporation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35266269</pmid><doi>10.1002/anie.202202571</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9943-2262</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-05, Vol.61 (21), p.e202202571-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2638014154 |
source | Wiley Online Library All Journals |
subjects | Cations Charge materials Charge Transfer Cocrystals Electron affinity Electrons Evaporation Evaporation rate Functional materials Irradiation Photothermal Conversion Radiation Radical Cations Solar-Driven Water Evaporation Sulfonic acid |
title | Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%E2%80%90Transfer%20Cocrystal%20via%20a%20Persistent%20Radical%20Cation%20Acceptor%20for%20Efficient%20Solar%E2%80%90Thermal%20Conversion&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Xu,%20Jieqiong&rft.date=2022-05-16&rft.volume=61&rft.issue=21&rft.spage=e202202571&rft.epage=n/a&rft.pages=e202202571-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202202571&rft_dat=%3Cproquest_cross%3E2638014154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660946102&rft_id=info:pmid/35266269&rfr_iscdi=true |