Charge‐Transfer Cocrystal via a Persistent Radical Cation Acceptor for Efficient Solar‐Thermal Conversion
Designing organic charge‐transfer (CT) cocrystals for efficient solar‐thermal conversion is a long‐sought goal but remains challenging. Here we construct a unique CT cocrystal by using a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) as the electron accepto...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-05, Vol.61 (21), p.e202202571-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Designing organic charge‐transfer (CT) cocrystals for efficient solar‐thermal conversion is a long‐sought goal but remains challenging. Here we construct a unique CT cocrystal by using a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) as the electron acceptor. The strong persistency and electron affinity of ABTS+. endow a high degree of electron delocalization between ABTS+. and the 3,3′,5,5′‐tetramethylbenzidine donor. Together with the intrinsic long‐wavelength absorption of ABTS+., the synthesized cocrystal can effectively capture the full solar spectrum and show distinguished photothermal efficiency. Such a cocrystal is further used for solar‐driven interfacial evaporation, and a high evaporation rate of 1.407 kg m−2 h−1 and a remarkable solar‐to‐vapor efficiency of 97.0 % have been achieved upon 1 sun irradiation. This work indicates the enormous prospects for charge transfer‐based functional materials through rational radical cation engineering.
A unique charge‐transfer cocrystal is constructed via a persistent 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radical cation (ABTS+.) electron acceptor. The strong electron affinity and long‐wavelength absorption of ABTS+. enable the resultant cocrystal with a full solar spectrum absorption, which yields an evaporation rate of 1.407 kg m−2 h−1 and a solar‐to‐vapor efficiency of 97.0 % in solar‐driven interfacial evaporation. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202202571 |