Global gene expression profiling in congenital diaphragmatic hernia (CDH) patients

Congenital diaphragmatic hernia (CDH) is an anomaly characterized by a defect in the diaphragm, leading to the passage of intra-abdominal organs into the thoracic cavity. Herein, the presented work analyzes the global gene expression profiles in nine CDH and one healthy newborn. All of the patients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional & integrative genomics 2022-06, Vol.22 (3), p.359-369
Hauptverfasser: Gürünlüoğlu, Kubilay, Dündar, Muhammed, Unver, Turgay, Akpınar, Necmettin, Gokce, Ismail Kürşad, Gürünlüoğlu, Semra, Demircan, Mehmet, Koc, Ahmet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Congenital diaphragmatic hernia (CDH) is an anomaly characterized by a defect in the diaphragm, leading to the passage of intra-abdominal organs into the thoracic cavity. Herein, the presented work analyzes the global gene expression profiles in nine CDH and one healthy newborn. All of the patients had left posterolateral (Bochdalek) diaphragmatic hernia, operated via an abdominal approach, and stomach and bowels in the thorax cavity. Some patients also had additional anomalies. A total of 560 differentially regulated genes were measured. Among them, 11 genes showed significant changes in expression associated with lung tissue, vascular structure development, and vitamin A metabolism, which are typical ontologies related to CDH etiology. Among them, SLC25A24 and RAB3IL1 are involved in angiogenesis, HIF1A and FOXC2-AS1 are related with the alveolus, MAGI2-AS3 is associated with the diaphragm, LHX4 and DHH are linked with the lung, and BRINP1, FZD9, WNT4, and BLOC1S1-RDH5 are involved in retinol. Besides, the expression levels of some previously claimed genes with CDH etiology also showed diverse expression patterns in different patients. All these indicated that CDH is a complex, multigenic anomaly, requiring holistic approaches for its elucidation.
ISSN:1438-793X
1438-7948
DOI:10.1007/s10142-022-00837-9