Superhydrophobic and deacidified cellulose/CaCO3-derived granular coating toward historic paper preservation
Deacidification and surface self-cleaning are of great significance for the long-term preservation of historic literature. Herein, a superhydrophobic self-cleaning coating, derived from nanocellulose coated with CaCO3 particles is constructed via chemical vapor deposition (CVD) for the first time fo...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2022-05, Vol.207, p.232-241 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deacidification and surface self-cleaning are of great significance for the long-term preservation of historic literature. Herein, a superhydrophobic self-cleaning coating, derived from nanocellulose coated with CaCO3 particles is constructed via chemical vapor deposition (CVD) for the first time for the preservation of historic paper. The static contact angle of superhydrophobic paper reached more than 150° and the minimum sliding angle was 6.4°. Deacidification effect was achieved with a desired pH value in the range from 7.50 to 7.77 and the maximum alkali storage was up to 1.235 mol/kg. It is found that the low-cost CaCO3 nanoparticles can not only remove the acid substances, but also gave the paper function of self-cleaning, which is very great significant for the protection of paper-based relics.
[Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2022.02.179 |