A Quantitative Study of Particle Dispersion due to Respiratory Support Modalities in PC-12 Aircraft: Prehospital Patient Transport
It is unclear whether supplemental oxygen and noninvasive ventilation respiratory support devices increase the dispersion of potentially infectious bioaerosols in a pressurized air medical cabin. This study quantitatively compared particle dispersion from respiratory support modalities in an air med...
Gespeichert in:
Veröffentlicht in: | Air medical journal 2022-01, Vol.41 (1), p.109-113 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is unclear whether supplemental oxygen and noninvasive ventilation respiratory support devices increase the dispersion of potentially infectious bioaerosols in a pressurized air medical cabin. This study quantitatively compared particle dispersion from respiratory support modalities in an air medical cabin during flight.
Dispersion was measured in a fixed wing air ambulance during flight with a breathing medical mannequin simulator exhaling nebulized saline from the lower respiratory tract with the following respiratory support modalities: a nasal cannula with a surgical mask, high-flow nasal oxygen (HFNO) with a surgical mask, and noninvasive bilevel positive airway pressure (BiPAP) ventilation.
Nasal cannula oxygen with a surgical mask was associated with the highest particle concentrations. In the absence of mask seal leaks, BiPAP was associated with 1 order of magnitude lower particle concentration compared with a nasal cannula with a surgical mask. Particle concentrations associated with HFNO with a surgical mask were lower than a nasal cannula with a surgical mask but higher than BiPAP.
Particle dispersion associated with the use of BiPAP and HFNO with a surgical mask is lower than nasal cannula oxygen with a surgical mask. These findings may assist air medical organizations with operational decisions where little data exist about respiratory particle dispersion. |
---|---|
ISSN: | 1067-991X 1532-6497 |
DOI: | 10.1016/j.amj.2021.10.001 |