So similar yet so different: The distinct contributions of extrafascicular and fascicular phloem to transport and exudation in cucumber plants

Cucurbits have been used as phloem research models for many decades because their exudates can be accessed with ease. However, cucurbit plants possess two distinct phloem systems known as the fascicular phloem (FP) and extrafascicular phloem (EFP). Therefore, the molecular composition and function o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology 2022-04, Vol.271, p.153643-153643, Article 153643
Hauptverfasser: Schnieder, Nadine, Känel, Andrea, Zimmermann, Matthias, Kriebs, Katrin, Witte, Antonia, Wrobel, Lisa S., Twyman, Richard M., Prüfer, Dirk, Furch, Alexandra C.U., Noll, Gundula A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cucurbits have been used as phloem research models for many decades because their exudates can be accessed with ease. However, cucurbit plants possess two distinct phloem systems known as the fascicular phloem (FP) and extrafascicular phloem (EFP). Therefore, the molecular composition and function of certain exudates can be misinterpreted due to their unclear origin. To characterize the anatomy and function of the different phloem systems more clearly, we generated specific antibodies against marker proteins (PP1 homologs) allowing the clear identification of the EFP at the organ, tissue and cellular levels by immunological staining. We also used detailed microscopy to determine common and unique anatomical features of the FP and EFP sieve elements (SEs) in cucumber (Cucumis sativus). The comparison of exudation rates and the dynamic viscosity, density and sugar content of the exudates from plants grown in the light and dark revealed the consistent composition and behavior of the EFP exudate even when photosynthesis was prevented, thus differing from the properties of the FP exudate. Furthermore, the analysis of phloem transport using a fluorescein disodium salt showed only wound-induced exudation of dye from the EFP, indicating the absence of transport in this tissue. Our results show that it is important to distinguish between the EFP and FP in cucurbits, particularly their differing behaviors in response to wounding.
ISSN:0176-1617
1618-1328
DOI:10.1016/j.jplph.2022.153643