Malachite Green, the hazardous materials that can bind to Apo-transferrin and change the iron transfer
Different groups of synthetic dyes might lead to environmental pollution. The binding affinity among hazardous materials with biomolecules necessitates a detailed understanding of their binding properties. Malachite Green might induce a change in the iron transfer by Apo-transferrin. Spectroscopic s...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2022-01, Vol.194, p.790-799 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Different groups of synthetic dyes might lead to environmental pollution. The binding affinity among hazardous materials with biomolecules necessitates a detailed understanding of their binding properties. Malachite Green might induce a change in the iron transfer by Apo-transferrin. Spectroscopic studies showed malachite green oxalate (MGO) could form the apo-transferrin-MGO complex and change the Accessible Surface Area (ASA) of the key amino acids for iron transfer. According to the ASA results the accessible surface area of Tyrosine, Aspartate, and Histidine of apo-transferrin significantly were changed, which can be considered as a convincing reason for changing the iron transfer. Moreover, based on the fluorescence data MGO could quench the fluorescence intensity of apo-transferrin in a static quenching mechanism. The experimental and Molecular Dynamic simulation results represented that the binding process led to micro environmental changes, around tryptophan residues and altered the tertiary structure of apo-transferrin. The Circular Dichroism (CD) spectra result represented a decrease in the amount of the α-Helix, as well as, increase in the β-sheet volumes of the apo-transferrin structure. Moreover, FTIR spectroscopy results showed a hypochromic shift in the peaks of amide I and II. Molecular docking and MD simulation confirmed all the computational findings.
•Binding interaction of MG with Apo-transferrin was investigated.•Experimental studies were applied to analyze the MG - Apo-transferrin complex.•The conformation of Apo-transferrin was changed by MG.•MG affected the activity of Apo-transferrin. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2021.11.126 |