An edible kanamycin sulfate cross-linked cellulose active against multiple pathogenic bacteria

In this work, an edible cellulose-based antibacterial material was prepared by cross-linking α-cellulose and kanamycin sulfate via glutaraldehyde to form kanamycin sulfate-glutaraldehyde-cellulose. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2022-01, Vol.194, p.435-444
Hauptverfasser: Gu, Jun, Zhang, Shuaifeng, Xia, Xuefeng, Zhang, Xuehan, Fan, Baochao, Zhou, Junming, Zhu, Haodan, Wang, Wei, Qi, Xianghui, Li, Li, Li, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, an edible cellulose-based antibacterial material was prepared by cross-linking α-cellulose and kanamycin sulfate via glutaraldehyde to form kanamycin sulfate-glutaraldehyde-cellulose. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction results indicated that the kanamycin sulfate molecule was cross-linked with the molecular chain of cellulose. The optimal mass ratio of kanamycin sulfate to α-cellulose was 1:100 and the degree of substitution reached 1.11%. The optimal kanamycin sulfate-glutaraldehyde-cellulose material showed an excellent inhabitation against both Gram-positive and Gram-negative bacteria. Meantime, the optimal kanamycin sulfate-glutaraldehyde-cellulose had a marked resistance to gastric acid and had low cell cytotoxicity. To promote the application of the kanamycin sulfate-glutaraldehyde-cellulose material, the porous microspheres were prepared via the sol-gel method. The particle size of the homogeneous porous microspheres is mainly distributed between 1.5 and 2.0 μm. Therefore, the kanamycin sulfate-glutaraldehyde-cellulose described herein is a potential edible, eco-friendly, potent, stable, inexpensive, and antibacterial carrier material for delivering drugs, proteins, or vaccines. •Preparation of kanamycin sulfate-glutaraldehyde-cellulose materials•Good inhibition against both Gram-positive and Gram-negative bacteria•Excellent resistance to gastric acid and low cell cytotoxicity•Kanamycin sulfate/cellulose microspheres display a homogeneous porous surface.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2021.11.085