Fate processes of Parabens, Triclocarban and Triclosan during wastewater treatment: assessment via field measurements and model simulations

The high levels of parabens (including methyl-, ethyl- and propyl congeners), triclocarban (TCC) and triclosan (TCS) used every year in China might be a problem to the typical wastewater treatment plant (WWTP). This study addresses measurements of parabens, TCC and TCS Northern China WWTP and a mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2021-09, Vol.28 (36), p.50602-50610
Hauptverfasser: Zhang, Zi-Feng, Wang, Lu, Zhang, Xianming, Zhang, Xue, Li, Yi-Fan, Nikolaev, Anatoly, Li, Wen-Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high levels of parabens (including methyl-, ethyl- and propyl congeners), triclocarban (TCC) and triclosan (TCS) used every year in China might be a problem to the typical wastewater treatment plant (WWTP). This study addresses measurements of parabens, TCC and TCS Northern China WWTP and a modelling assessment on the occurrence, fate and removal pathways in WWTP. Per-capita emissions of the three parabens, TCC and TCS to the WWTP were estimated as 0.41, 0.11 and 0.07 mg/d. After the wastewater treatment processes, 94, 92 and 87% of parabens, TCC and TCS were removed. The major removal pathway of parabens was biodegradation while that of TCC and TCS were sorption to sludge. Computer simulations on the fate processes of parabens, TCC and TCS in the WWTP using the SimpleTreat 4.0 model suggested the model could generally reproduce the measurements with root mean squared errors (RMSEs) of less than 10 ng/L. However, the model underestimated the removal of TCC and TCS from water to sludge in the primary tank. These discrepancies were attributed to the uncertainty of the predicted organic carbon-water partition coefficients ( K oc ) to which the modelling results are highly sensitive. The model predictions using updated K oc became more accurate and RMSEs of TCC and TCS were reduced by 40 and 80%, respectively. The modelling assessment suggests that the SimpleTreat, as a generic model to simulate chemical fate processes in WWTPs, has the potential to be applied to other similar WWTPs in China for estimating environmental releases of parabens, TCC and TCS at a larger spatial scale.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-021-14141-9