Recent advances in impacts of microplastics on nitrogen cycling in the environment: A review

Nitrogen cycling plays a decisive role in biogeochemistry, and largely depends on microbial driven nitrogen transformation. The environmental problems caused by microplastics are becoming more serious, and the analysis and control of its pollution in the environment have become a research hotspot in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-04, Vol.815, p.152740-152740, Article 152740
Hauptverfasser: Shen, Maocai, Song, Biao, Zhou, Chengyun, Almatrafi, Eydhah, Hu, Tong, Zeng, Guangming, Zhang, Yaxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrogen cycling plays a decisive role in biogeochemistry, and largely depends on microbial driven nitrogen transformation. The environmental problems caused by microplastics are becoming more serious, and the analysis and control of its pollution in the environment have become a research hotspot in the field. The nitrogen transformation and nitrogen cycling in the environment are mainly driven by microorganisms in the environment, and the existence of microplastics can affect the microbial population, abundance and type, thus affecting the transformation of nitrogen. The effect of microplastics on microorganisms involved in nitrogen transformation is briefly described. This paper mainly reviews the research progress on the impacts of microplastics on nitrogen transformation and nitrogen cycling in water, soil, sediment and sewage sludge. Microplastic type, size and concentration can cause obvious difference in the impacts of microplastics on nitrogen transformation. Then, response and mechanism of microplastics to microorganism mediated nitrogen transformation and nitrogen cycling are introduced. Processes of nitrogen transformation are affected by interfering with microorganism diversity and structure, enzyme activities and related coding genes and oxygen flux. Additionally, additives released from microplastics can also affect the microbial activity. However, mechanisms of microplastics on environmental nitrogen transformation and nitrogen cycling are not fully understood due to the lack of relevant research. There are effective strategies to evaluate complex environmental systems, prolong action time, strengthen multi factor and multi-level research, and assist molecular biology and stable isotope technology. This review article can provide valuable insights into the impact of microplastics on microorganisms mediated nitrogen transformation processes and evaluate the impact on ecological and environmental health. [Display omitted] •Research progress on impact of microplastics on nitrogen cycling is reviewed.•Responses of microplastics to microbes mediated nitrogen cycling are introduced.•The mechanisms of microplastics affecting nitrogen cycle are summarized.•Strategy is proposed to further study impacts of microplastic on nitrogen cycling.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.152740