Nuclear medicine imaging methods of radiation-induced cardiotoxicity
Breast cancer survival is significantly improved over the past decades due to major improvements in anti-tumor therapies and the implementation of regular screening, which leads to early detection of breast cancer. Therefore, it is of utmost importance to prevent patients from long-term side effects...
Gespeichert in:
Veröffentlicht in: | Seminars in nuclear medicine 2022-09, Vol.52 (5), p.597-610 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breast cancer survival is significantly improved over the past decades due to major improvements in anti-tumor therapies and the implementation of regular screening, which leads to early detection of breast cancer. Therefore, it is of utmost importance to prevent patients from long-term side effects, including radiotherapy-induced cardiotoxicity. Radiotherapy may contribute to damage of myocardial structures on the cellular level, which eventually could result in various types of cardiovascular problems, including coronary artery disease and (non-)ischemic cardiomyopathy, leading to heart failure. These cardiac complications of radiotherapy are preceded by alterations in myocardial perfusion and blood flow. Therefore, early detection of these alterations is important to prevent the progression of these pathophysiological processes. Several radionuclide imaging techniques may contribute to the early detection of these changes. Single-Photon Emission Computed Tomography (SPECT) cameras can be used to create Multigated Acquisition scans in order to assess the left ventricular systolic and diastolic function. Furthermore, SPECT cameras are used for myocardial perfusion imaging with radiopharmaceuticals such as 99mTc-sestamibi and 99mTc-tetrofosmin. Accurate quantitative measurement of myocardial blood flow (MBF), can be performed by Positron Emission Tomography (PET), as the uptake of some of the tracers used for PET-based MBF measurement almost creates a linear relationship with MBF, resulting in very accurate blood flow quantification. Furthermore, there are PET and SPECT tracers that can assess inflammation and denervation of the cardiac sympathetic nervous system. Research over the past decades has mainly focused on the long-term development of left ventricular impairment and perfusion defects. Considering laterality of the breast cancer, some early studies have shown that women irradiated for left-sided breast cancer are more prone to cardiotoxic side effects than women irradiated for right-sided breast cancer. The left-sided radiation field in these trials, which predominantly used older radiotherapy techniques without heart-sparing techniques, included a larger volume of the heart and left ventricle, leading to increased unavoidable radiation exposure to the heart due to the close proximity of the radiation treatment volume. Although radiotherapy for breast cancer exposes the heart to incidental radiation, several improvements and technical developments |
---|---|
ISSN: | 0001-2998 1558-4623 |
DOI: | 10.1053/j.semnuclmed.2022.02.001 |