Photosensitive-Stamp-Inspired Scalable Fabrication Strategy of Wearable Sensing Arrays for Noninvasive Real-Time Sweat Analysis

Wearable sweat sensing is essential to the development of personalized health monitoring in a noninvasive manner with molecular-level insight. Hence, there is an increasing demand for convenient, facile, and efficient fabrication of wearable sensing arrays. Inspired by a photosensitive stamp (PS), w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-03, Vol.94 (10), p.4547-4555
Hauptverfasser: Hao, Junxing, Zhu, Zeqiang, Hu, Chengguo, Liu, Zhihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wearable sweat sensing is essential to the development of personalized health monitoring in a noninvasive manner with molecular-level insight. Hence, there is an increasing demand for convenient, facile, and efficient fabrication of wearable sensing arrays. Inspired by a photosensitive stamp (PS), we present herein a simple, low-cost, and eco-friendly vacuum filtration–transfer printing method (termed PS-VFTP) for the scalable preparation of single-walled carbon nanotube (SWCNT) based flexible electrode arrays. This method can economically yield customized flexible SWCNT arrays with praiseworthy performance, such as high reproducibility, precision, uniformity, conductivity, and mechanical stability. In addition, the flexible SWCNT arrays can be easily functionalized into high-performance electrochemical sensors for the simultaneous monitoring of sweat metabolites (glucose, lactate) and electrolytes (Na+, K+). The integration of wearable sensing arrays with a signal acquisition and processing circuit system in the intelligent wearable sensors empowers them to realize noninvasive, real-time, and in situ sweat analysis during exercise. More meaningfully, such a PS-VFTP strategy can be easily expanded to the economical manufacturing of other flexible electronic devices.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.2c00593