Ultrasound‐Responsive Aqueous Two‐Phase Microcapsules for On‐Demand Drug Release

Traditional implanted drug delivery systems cannot easily change their release profile in real time to respond to physiological changes. Here we present a microfluidic aqueous two‐phase system to generate microcapsules that can release drugs on demand as triggered by focused ultrasound (FUS). The bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-05, Vol.61 (20), p.e202116515-n/a
Hauptverfasser: Field, Rachel D., Jakus, Margaret A., Chen, Xiaoyu, Human, Kelia, Zhao, Xuanhe, Chitnis, Parag V., Sia, Samuel K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional implanted drug delivery systems cannot easily change their release profile in real time to respond to physiological changes. Here we present a microfluidic aqueous two‐phase system to generate microcapsules that can release drugs on demand as triggered by focused ultrasound (FUS). The biphasic microcapsules are made of hydrogels with an outer phase of mixed molecular weight (MW) poly(ethylene glycol) diacrylate that mitigates premature payload release and an inner phase of high MW dextran with payload that breaks down in response to FUS. Compound release from microcapsules could be triggered as desired; 0.4 μg of payload was released across 16 on‐demand steps over days. We detected broadband acoustic signals amidst low heating, suggesting inertial cavitation as a key mechanism for payload release. Overall, FUS‐responsive microcapsules are a biocompatible and wirelessly triggerable structure for on‐demand drug delivery over days to weeks. Microfluidic fabrication (left) is used to prepare a two aqueous phase microcapsule (right), which releases a model drug payload on demand in response to focused ultrasound actuation.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202116515