Experimental models of undifferentiated pleomorphic sarcoma and malignant peripheral nerve sheath tumor

Undifferentiated pleomorphic sarcoma (UPS) and malignant peripheral nerve sheath tumor (MPNST) are aggressive soft tissue sarcomas that do not respond well to current treatment modalities. The limited availability of UPS and MPNST cell lines makes it challenging to identify potential therapeutic tar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laboratory investigation 2022-06, Vol.102 (6), p.658-666
Hauptverfasser: Bhalla, Angela D., Landers, Sharon M., Singh, Anand K., Landry, Jace P., Yeagley, Michelle G., Myerson, Gabryella S. B., Delgado-Baez, Cristian B., Dunnand, Stephanie, Nguyen, Theresa, Ma, Xiaoyan, Bolshakov, Svetlana, Menegaz, Brian A., Lamhamedi-Cherradi, Salah-Eddine, Mao, Xizeng, Song, Xingzhi, Lazar, Alexander J., McCutcheon, Ian E., Slopis, John M., Ludwig, Joseph A., Lev, Dina C., Rai, Kunal, Torres, Keila E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Undifferentiated pleomorphic sarcoma (UPS) and malignant peripheral nerve sheath tumor (MPNST) are aggressive soft tissue sarcomas that do not respond well to current treatment modalities. The limited availability of UPS and MPNST cell lines makes it challenging to identify potential therapeutic targets in a laboratory setting. Understanding the urgent need for improved treatments for these tumors and the limited cellular models available, we generated additional cell lines to study these rare cancers. Patient-derived tumors were used to establish 4 new UPS models, including one radiation-associated UPS—UPS271.1, UPS511, UPS0103, and RIS620, one unclassified spindle cell sarcoma—USC060.1, and 3 new models of MPNST—MPNST007, MPNST3813E, and MPNST4970. This study examined the utility of the new cell lines as sarcoma models by assessing their tumorigenic potential and mutation status for known sarcoma-related genes. All the cell lines formed colonies and migrated in vitro. The in vivo tumorigenic potential of the cell lines and corresponding xenografts was determined by subcutaneous injection or xenograft re-passaging into immunocompromised mice. USC060.1 and UPS511 cells formed tumors in mice upon subcutaneous injection. UPS0103 and RIS620 tumor implants formed tumors in vivo, as did MPNST007 and MPNST3813E tumor implants. Targeted sequencing analysis of a panel of genes frequently mutated in sarcomas identified TP53 , RB1 , and ATRX mutations in a subset of the cell lines. These new cellular models provide the scientific community with powerful tools for detailed studies of tumorigenesis and for investigating novel therapies for UPS and MPNST. Soft tissue sarcomas are rare and aggressive neoplasms with limited models for laboratory-based studies. This study established eight models of soft tissue sarcomas, three malignant peripheral nerve sheath tumors, four undifferentiated pleomorphic sarcomas, and one unclassified spindle cell sarcoma. The new sarcoma cell lines are tools to elucidate molecular aberrations and improve treatment options for these difficult-to-treat sarcomas.
ISSN:0023-6837
1530-0307
DOI:10.1038/s41374-022-00734-6