Removal and Recovery of Gaseous Elemental Mercury Using a Cl-Doped Protonated Polypyrrole@MWCNTs Composite Membrane

Due to the restrictions on mercury mining, recovering the mercury from mercury-containing waste is attracting increasing attention. This study successfully achieved the removal and recovery of gaseous elemental mercury (Hg0) by using membrane technology. A novel composite membrane of Cl-doped proton...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-03, Vol.56 (6), p.3689-3698
Hauptverfasser: Hao, Runlong, Ma, Zhao, Zeng, Zefeng, Mao, Yumin, Yuan, Bo, Wang, Lidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the restrictions on mercury mining, recovering the mercury from mercury-containing waste is attracting increasing attention. This study successfully achieved the removal and recovery of gaseous elemental mercury (Hg0) by using membrane technology. A novel composite membrane of Cl-doped protonated polypyrrole-coated multiwall carbon nanotubes (Cl-PPy@MWCNTs) was fabricated in which MWCNTs acted as the framework to support the active component Cl-PPy. The morphology, structure, and composition of the prepared membranes were determined by field emission scanning electron microcopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, etc. The composite membrane exhibited an excellent performance in Hg0 removal (97.3%) at a high space velocity of 200,000 h–1. The dynamical adsorption capacity of Hg0 was 3.87 mg/g when the Hg0 breakthrough reached 10%. The adsorbed Hg0 could be recovered/enriched via a leaching process using acidic NaCl solution; meanwhile, the membrane was regenerated. The recovered mercury was identified in the form of Hg2+, with a recovery efficiency of over 99%. Density functional theory calculations and mechanism analysis clarified that the electrons of Hg0 transported to the delocalized electron orbits of protonated PPy and then combined with Cl– to form Hg2Cl2/HgCl2. Finally, we first demonstrated that the analogous protonated conductive polymers (e.g., polyaniline) also possessed good Hg0 removal ability, implying that such species may offer more outstanding answers and attract attention in future.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c07594