Removal and Recovery of Gaseous Elemental Mercury Using a Cl-Doped Protonated Polypyrrole@MWCNTs Composite Membrane
Due to the restrictions on mercury mining, recovering the mercury from mercury-containing waste is attracting increasing attention. This study successfully achieved the removal and recovery of gaseous elemental mercury (Hg0) by using membrane technology. A novel composite membrane of Cl-doped proton...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2022-03, Vol.56 (6), p.3689-3698 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the restrictions on mercury mining, recovering the mercury from mercury-containing waste is attracting increasing attention. This study successfully achieved the removal and recovery of gaseous elemental mercury (Hg0) by using membrane technology. A novel composite membrane of Cl-doped protonated polypyrrole-coated multiwall carbon nanotubes (Cl-PPy@MWCNTs) was fabricated in which MWCNTs acted as the framework to support the active component Cl-PPy. The morphology, structure, and composition of the prepared membranes were determined by field emission scanning electron microcopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, etc. The composite membrane exhibited an excellent performance in Hg0 removal (97.3%) at a high space velocity of 200,000 h–1. The dynamical adsorption capacity of Hg0 was 3.87 mg/g when the Hg0 breakthrough reached 10%. The adsorbed Hg0 could be recovered/enriched via a leaching process using acidic NaCl solution; meanwhile, the membrane was regenerated. The recovered mercury was identified in the form of Hg2+, with a recovery efficiency of over 99%. Density functional theory calculations and mechanism analysis clarified that the electrons of Hg0 transported to the delocalized electron orbits of protonated PPy and then combined with Cl– to form Hg2Cl2/HgCl2. Finally, we first demonstrated that the analogous protonated conductive polymers (e.g., polyaniline) also possessed good Hg0 removal ability, implying that such species may offer more outstanding answers and attract attention in future. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.1c07594 |