Eye Removal in Living Zebrafish Larvae to Examine Innervation-dependent Growth and Development of the Visual System

Zebrafish exhibit remarkable life-long growth and regenerative abilities. For example, specialized stem cell niches established during embryogenesis support continuous growth of the entire visual system, both in the eye and the brain. Coordinated growth between the retinae and the optic tectum ensur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Visualized Experiments 2022-02 (180)
Hauptverfasser: Hagen, Olivia L., Kim, Yehyun, Kushkowski, Elaine, Rouse, Hannah, Cerveny, Kara L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zebrafish exhibit remarkable life-long growth and regenerative abilities. For example, specialized stem cell niches established during embryogenesis support continuous growth of the entire visual system, both in the eye and the brain. Coordinated growth between the retinae and the optic tectum ensures accurate retinotopic mapping as new neurons are added in the eyes and brain. To address whether retinal axons provide crucial information for regulating tectal stem and progenitor cell behaviors such as survival, proliferation, and/or differentiation, it is necessary to be able to compare innervated and denervated tectal lobes within the same animal and across animals. Surgical removal of one eye from living larval zebrafish followed by observation of the optic tectum achieves this goal. The accompanying video demonstrates how to anesthetize larvae, electrolytically sharpen tungsten needles, and use them to remove one eye. It next shows how to dissect brains from fixed zebrafish larvae. Finally, the video provides an overview of the protocol for immunohistochemistry and a demonstration of how to mount stained embryos in low-melting-point agarose for microscopy.
ISSN:1940-087X
1940-087X
DOI:10.3791/63509