Area-efficient multipliers for digital signal processing applications
An area-efficient parallel sign-magnitude multiplier that receives two N-bit numbers and produces an N-bit product, referred to as a truncated multiplier, is described. The quantization of the product to N bits is achieved by omitting about half the adder cells needed to add the partial products but...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 1996-02, Vol.43 (2), p.90-95 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An area-efficient parallel sign-magnitude multiplier that receives two N-bit numbers and produces an N-bit product, referred to as a truncated multiplier, is described. The quantization of the product to N bits is achieved by omitting about half the adder cells needed to add the partial products but in order to keep the quantization error to a minimum, probabilistic biases are obtained and are then fed to the inputs of the retained adder cells. The truncated multiplier requires approximately 50% of the area of a standard parallel multiplier. The paper then shows that this design strategy can also be applied for the design of two's-complement multipliers. The paper concludes with the application of the truncated multiplier for the implementation of a digital filter and it is shown that the signal-to-noise ratio of the digital filter using a truncated multiplier is better than that using a standard multiplier. |
---|---|
ISSN: | 1057-7130 1558-125X |
DOI: | 10.1109/82.486455 |