Self-supported Co9S8-Ni3S2-CNTs/NF electrode with superwetting multistage micro-nano structure for efficient bifunctional overall water splitting

[Display omitted] Electrochemical water splitting for hydrogen production using cost-effective and high-efficiency electrocatalysts in alkaline electrolytes is of great significance for solving energy crisis and environmental pollution. Herein, we reported a superhydrophilic and underwater superaero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-06, Vol.616, p.287-297
Hauptverfasser: Yao, Yali, He, Jinmei, Ma, Lili, Wang, Jiaxin, Peng, Lei, Zhu, Xuedan, Li, Kanshe, Qu, Mengnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Electrochemical water splitting for hydrogen production using cost-effective and high-efficiency electrocatalysts in alkaline electrolytes is of great significance for solving energy crisis and environmental pollution. Herein, we reported a superhydrophilic and underwater superaerophobic multistage layered micro-nano structure ofCo9S8-Ni3S2-CNTs/NF on nickel foam (NF) prepared by a simple one-step hydrothermal procedure. Particularly, the multistage layered micro-nano structure makes the electrode superhydrophilic and superaerophobic, which can facilitate the exposure of active sites, accelerate the tansfer of electrolyte and the release of gas bubbles. Consequently, the rough electrode demonstrated excellent catalytic performance in alkaline condition, which only need a low overpotential 127 mV for oxygen evolution reaction (OER) and 243 mV for hydrogen evolution reaction (HER) at 10 mA cm−2 and can keep a long durability for 10 h at 10 mA cm−2. In addition, the production of hydrogen in an electrolytic water device with Co9S8-Ni3S2-CNTs/NF as bifunctional electrode prowered by the electricity derived from solar and wind energy in laboratory condition was artificially simulated. This work represents a perspective in improving the electrocatalytic performance of water splitting by structure and wettability regulation and opens a new avenue for clean energy generation.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2022.02.071