Fast-running beamforming algorithm for optical phased array beam scanners comprised of polymeric waveguide devices

The phase error imposed in optical phased arrays (OPAs) for beam scanning LiDAR is unavoidable due to minute dimensional fluctuations that occur during the waveguide manufacturing process. To compensate for the phase error, in this study, a fast-running beamforming algorithm is developed based on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-01, Vol.30 (2), p.768-779
Hauptverfasser: Jin, Jinung, Lee, Eun-Su, Chun, Kwon-Wook, Lee, Sang-Shin, Oh, Min-Cheol
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phase error imposed in optical phased arrays (OPAs) for beam scanning LiDAR is unavoidable due to minute dimensional fluctuations that occur during the waveguide manufacturing process. To compensate for the phase error, in this study, a fast-running beamforming algorithm is developed based on the rotating element vector method. The proposed algorithm is highly suitable for OPA devices comprised of polymer waveguides, where thermal crosstalk between phase modulators is suppressed effectively, allowing for each phase modulator to be controlled independently. The beamforming speed is determined by the number of phase adjustments. Hence, by using the least square approximation for a 32-channel polymer waveguide OPA device the number of phase adjustments needed to complete beamforming was reduced and the beamforming time was shortened to 16 seconds.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.443180