Straw incorporation improved the adsorption of potassium by increasing the soil humic acid in macroaggregates
Straw incorporation has been broadly demonstrated to be effective for the maintenance of soil potassium (K) fertility in farmlands, which increases K and carbon (C) inputs and improves soil stability due to aggregate formation and physiochemical bonding. However, the response of K retention in aggre...
Gespeichert in:
Veröffentlicht in: | Journal of environmental management 2022-05, Vol.310, p.114665-114665, Article 114665 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Straw incorporation has been broadly demonstrated to be effective for the maintenance of soil potassium (K) fertility in farmlands, which increases K and carbon (C) inputs and improves soil stability due to aggregate formation and physiochemical bonding. However, the response of K retention in aggregate fractions (AFs) to soil organic carbon (SOC) changes is poorly understood. Field trials under a completely random experimental design considering two factors, straw return and K fertilization, were conducted to study the comprehensive effects of SOC and various AFs on soil K adsorption. The results indicated that the soil exchangeable and nonexchangeable K pools (EKP and NKP) increased upon straw incorporation due to an increase in macroaggregates (>2 mm fraction). The synergistic increase in SOC and humic acid (HA) contents, which resulted in a complex molecular structure and improved soil aggregation, promoted K adsorption. Good linear relationships existed between the apparent K balance and the EKP and NKP values in the >2 mm fraction. Structural equation modeling (SEM) indicated that SOC and various AFs exerted positive and significant effects on soil EKP and NKP, and thus verified 96% of the total variation in K adsorption. Thus, combination of straw and K fertilization increased the aggregate-associated C and K, which were primarily correlated with the >2 mm fraction. These direct measurements and estimates provide insights into the aggregates associated with K, which enhances the understanding of the chemical behavior of soil K upon straw incorporation.
•The >2 mm aggregate-associated K was mostly correlated with soil K pools.•The increase in SOC resulted in a complex molecular structure and improved soil aggregation.•Straw incorporation improved soil HA and thus promoted K adsorption. |
---|---|
ISSN: | 0301-4797 1095-8630 |
DOI: | 10.1016/j.jenvman.2022.114665 |