Optimization of beam shaping for ultrasensitive inertial measurement using a phase-only spatial light modulator

This study proposes an approach to generate a uniform flat-top beam with a liquid crystal spatial light modulator (LC-SLM) to optimize ultrasensitive inertial measurement. The random incomplete Gaussian beam is modulated into a flat-top beam by uploading a beam shaping optimization algorithm on an L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2022-02, Vol.61 (6), p.C55-C64
Hauptverfasser: Chen, Xu, Fang, Xiujie, Ma, Danyue, Liu, Ying, Cao, Li, Zhai, Yueyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study proposes an approach to generate a uniform flat-top beam with a liquid crystal spatial light modulator (LC-SLM) to optimize ultrasensitive inertial measurement. The random incomplete Gaussian beam is modulated into a flat-top beam by uploading a beam shaping optimization algorithm on an LC-SLM. Simulation results verify the effectiveness of the proposed method. The beam obtained from the experimental results with the 4f filter system optimization also conforms to the properties of the generated flat-top beam. Compared to existing beam shaping algorithms for simulation and experimental analysis, the beam shaping design based on the LC-SLM to optimize the ultrasensitive inertial measurement is realized. This method has also been verified to be effective in beam shaping in various beam situations. The application of this method in ultrahigh-sensitivity inertial measurement should prove significant.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.441418