Copper-Based Metal–Organic Framework Overcomes Cancer Chemoresistance through Systemically Disrupting Dynamically Balanced Cellular Redox Homeostasis
Chemodrug resistance is a major reason accounting for tumor recurrence. Given the mechanistic complexity of chemodrug resistance, molecular inhibitors and targeting drugs often fail to eliminate drug-resistant cancer cells, and sometimes even promote chemoresistance by activating alternative pathway...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2022-03, Vol.144 (11), p.4799-4809 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemodrug resistance is a major reason accounting for tumor recurrence. Given the mechanistic complexity of chemodrug resistance, molecular inhibitors and targeting drugs often fail to eliminate drug-resistant cancer cells, and sometimes even promote chemoresistance by activating alternative pathways. Here, by exploiting biochemical fragility of high-level but dynamically balanced cellular redox homeostasis in drug-resistant cancer cells, we design a nanosized copper/catechol-based metal–organic framework (CuHPT) that effectively disturbs this homeostasis tilting the balance toward oxidative stress. Within drug-resistant cells, CuHPT starts disassembly that is triggered by persistent consumption of cellular glutathione (GSH). CuHPT disassembly simultaneously releases two structural elements: catechol ligands and reductive copper ions (Cu+). Both of them cooperatively function to amplify the production of intracellular radical oxidative species (ROS) via auto-oxidation and Fenton-like reactions through exhausting GSH. By drastically heightening cellular oxidative stress, CuHPT exhibits selective and potent cytotoxicity to multiple drug-resistant cancer cells. Importantly, CuHPT effectively inhibits in vivo drug-resistant tumor growth and doubles the survival time of tumor-bearing mice. Thus, along with CuHPT’s good biocompatibility, our biochemical, cell biological, preclinical animal model data provide compelling evidence supporting the notion that this copper-based MOF is a predesigned smart therapeutic against drug-resistant cancers through precisely deconstructing their redox homeostasis. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.1c11856 |