Low-intensity focused ultrasound stimulation reverses social avoidance behavior in mice experiencing social defeat stress

The excitatory neurons of the medial prefrontal cortex (mPFC) respond to social stimuli. However, little is known about how the neural activity is altered during social avoidance, and whether it could act as a target of low-intensity focused ultrasound stimulation (LIFUS) to rescue social deficits....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2022-12, Vol.32 (24), p.5580-5596
Hauptverfasser: Wang, Yimeng, Bai, Yang, Xiao, Xi, Wang, Ling, Wei, Ganjiang, Guo, Mingkun, Song, Xizi, Tian, Yutao, Ming, Dong, Yang, Jiajia, Zheng, Chenguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The excitatory neurons of the medial prefrontal cortex (mPFC) respond to social stimuli. However, little is known about how the neural activity is altered during social avoidance, and whether it could act as a target of low-intensity focused ultrasound stimulation (LIFUS) to rescue social deficits. The present study aimed to investigate the mechanisms of neuronal activities and inflammatory responses underlying the effect of LIFUS on social avoidance. We found that chronic LIFUS stimulation can effectively improve social avoidance in the defeated mice. Calcium imaging recordings by fiber photometry in the defeated mice showed inhibited ensemble activity during social behaviors. LIFUS instantaneously triggered the mPFC neuronal activities, and chronic LIFUS significantly enhanced their neuronal excitation related to social interactions. We further found that the excessive activation of microglial cells and the overexpression of the inflammation signaling, i.e. Toll-like receptors(TLR4)/nuclear factor-kappaB(NF-КB), in mPFC were significantly inhibited by LIFUS. These results suggest that the LIFUS may inhibit social avoidance behavior by reducing activation of the inflammatory response, increasing neuronal excitation, and protecting the integrity of the neuronal structure in the mPFC. Our findings raised the possibility of LIFUS being applied as novel neuromodulation for social avoidance treatment in neuropsychiatric diseases.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhac037