Experimental functional shift–induced osteoarthritis‐like changes at the TMJ and altered integrin expression in a rat model

Mandibular deviation affects the biomechanical environment of the temporomandibular joint (TMJ) and causes thinning of cartilage on the deviated side. We aimed to evaluate, using a rat model, the effect of mandibular functional deviation on the TMJ in relation to the functional roles of integrin β f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2022-05, Vol.1511 (1), p.210-227
Hauptverfasser: Zou, Yuchun, Cai, Senxin, Lin, Hanyu, Cai, Jingwen, Zheng, Da‐Li, Lu, You‐Guang, Xu, Linyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mandibular deviation affects the biomechanical environment of the temporomandibular joint (TMJ) and causes thinning of cartilage on the deviated side. We aimed to evaluate, using a rat model, the effect of mandibular functional deviation on the TMJ in relation to the functional roles of integrin β family members. The effects of experimental functional deviation on the TMJ of 6‐week‐old Sprague–Dawley female rats, randomly assigned to control (n = 42) and experimental groups (n = 42), were evaluated at 3 days and 1, 2, 4, and 8 weeks by histological staining, immunofluorescence, real‐time quantitative polymerase chain reaction, and micro‐computed tomography. The results showed that the experimental functional shift changed the shape of condyles, thinned the cartilage, and increased the proportion of the hypertrophic layer on the deviated sides of condyles. In addition, the extracellular matrix of the condyle cartilage exhibited degradation at 1 week and subchondral trabecular bone was lost at 4 and 8 weeks. Osteoarthritis (OA)‐like changes occurred in the left and right condyles of rats in the experimental group and were aggravated over time. Integrin β family expression, especially integrin β2, was altered from week 1, possibly related to the OA‐like changes. These data may provide insight into the onset of TMJ OA. Mandibular deviation affects the biomechanical environment of the temporomandibular joint (TMJ) and causes thinning of cartilage on the deviated side. The aim of the present study was to use a rat model to elucidate the effect of mandibular deviation on the TMJ and the functional roles of the integrin β subunits in the context of TMJ osteoarthritis.
ISSN:0077-8923
1749-6632
DOI:10.1111/nyas.14741