In Situ Observation of the Early Stages of Rapid Solid–Liquid Reaction in Closed Liquid Cell TEM Using Graphene Encapsulation
In situ liquid cell transmission electron microscopy (TEM) is a very useful tool for investigating dynamic solid–liquid reactions. However, there are challenges to observe the early stages of spontaneous solid–liquid reactions using a closed-type liquid cell system, the most popular and simple liqui...
Gespeichert in:
Veröffentlicht in: | Microscopy and microanalysis 2022-02, Vol.28 (1), p.53-60 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In situ liquid cell transmission electron microscopy (TEM) is a very useful tool for investigating dynamic solid–liquid reactions. However, there are challenges to observe the early stages of spontaneous solid–liquid reactions using a closed-type liquid cell system, the most popular and simple liquid cell system. We propose a graphene encapsulation method to overcome this limitation of closed-type liquid cell TEM. The solid and liquid are separated using graphene to suspend the reaction until the graphene layer is destroyed. Graphene can be decomposed by the high-energy electron beam used in TEM, allowing the reaction to proceed. Fast dissolution of graphene-capped copper nanoparticles in an FeCl3 solution was demonstrated via in situ liquid cell TEM at 300 kV using a cell with closed-type SiNx windows. |
---|---|
ISSN: | 1431-9276 1435-8115 |
DOI: | 10.1017/S1431927621013647 |