Nuclear spin-wave quantum register for a solid-state qubit

Solid-state nuclear spins surrounding individual, optically addressable qubits 1 , 2 are a crucial resource for quantum networks 3 – 6 , computation 7 – 11 and simulation 12 . Although hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence 13 , developing coherent qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2022-02, Vol.602 (7897), p.408-413
Hauptverfasser: Ruskuc, Andrei, Wu, Chun-Ju, Rochman, Jake, Choi, Joonhee, Faraon, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid-state nuclear spins surrounding individual, optically addressable qubits 1 , 2 are a crucial resource for quantum networks 3 – 6 , computation 7 – 11 and simulation 12 . Although hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence 13 , developing coherent quantum systems in nuclear-spin-rich hosts enables exploration of a much broader range of materials for quantum information applications. The collective modes of these dense nuclear spin ensembles provide a natural basis for quantum storage 14 ; however, using them as a resource for single-spin qubits has thus far remained elusive. Here, by using a highly coherent, optically addressed 171 Yb 3+ qubit doped into a nuclear-spin-rich yttrium orthovanadate crystal 15 , we develop a robust quantum control protocol to manipulate the multi-level nuclear spin states of neighbouring 51 V 5+ lattice ions. Via a dynamically engineered spin-exchange interaction, we polarize this nuclear spin ensemble, generate collective spin excitations, and subsequently use them to implement a quantum memory. We additionally demonstrate preparation and measurement of maximally entangled 171 Yb– 51 V Bell states. Unlike conventional, disordered nuclear-spin-based quantum memories 16 – 24 , our platform is deterministic and reproducible, ensuring identical quantum registers for all 171 Yb 3+ qubits. Our approach provides a framework for utilizing the complex structure of dense nuclear spin baths, paving the way towards building large-scale quantum networks using single rare-earth ion qubits 15 , 25 – 28 . Via spin-exchange interactions with 51 V 5+ ions, an optically addressed 171 Yb 3+ qubit in a nuclear-spin-rich yttrium orthovanadate crystal is used to implement a reproducible nuclear-spin-based quantum memory, and entangled Yb–V Bell states are demonstrated.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-021-04293-6