Mimicking Native Liver Lobule Microarchitecture In Vitro with Parenchymal and Non-parenchymal Cells Using 3D Bioprinting for Drug Toxicity and Drug Screening Applications

Bioengineering an in vitro liver model recapitulating the native liver microarchitecture consisting of parenchymal and non-parenchymal cells is crucial in achieving cellular crosstalk and hepatic metabolic functions for accurate hepatotoxicity prediction. Bioprinting holds the promise of engineering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-03, Vol.14 (8), p.10167-10186
Hauptverfasser: Janani, G, Priya, Smriti, Dey, Souradeep, Mandal, Biman B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioengineering an in vitro liver model recapitulating the native liver microarchitecture consisting of parenchymal and non-parenchymal cells is crucial in achieving cellular crosstalk and hepatic metabolic functions for accurate hepatotoxicity prediction. Bioprinting holds the promise of engineering constructs with precise control over the spatial distribution of multiple cells. Two distinct tissue-specific liver extracellular matrix (ECM)-based bioinks with excellent printability and rheological attributes are formulated for supporting parenchymal and non-parenchymal cells. A physiologically relevant human vascularized liver model is bioprinted with a novel liver ECM-based bioink laden with human adipose mesenchymal stem cell-derived hepatocyte-like cells (HLCs), human umbilical vein endothelial cells (HUVECs), and human hepatic stellate cells (HHSCs) using an extrusion-based bioprinting approach and validated for hepatotoxicity assessment. The HLC/HUVEC/HHSC-laden liver model resembles native alternate cords of hepatocytes with a functional sinusoidal lumen-like network in both horizontal and vertical directions, demonstrating enhanced albumin production, urea synthesis, and cytochrome P450 (CPR) activity. Furthermore, the liver model is evaluated for drug toxicity assessment following 24 h exposure to different concentrations of (i) non-hepatotoxicants aspirin and dexamethasone, (ii) idiosyncratic hepatotoxicant trovafloxacin mesylate, and (iii) clinical hepatotoxicant acetaminophen and troglitazone. A follow-up cell viability and metabolic competence evaluation by estimating DNA concentration, lactate dehydrogenase activity, and CPR activity revealed a dose-dependent clinically relevant hepatotoxic response. These results corroborated that the developed clinically relevant vascularized liver model is affordable and would aid pharmaceutical companies in speeding up the drug development and provide a robust platform for hepatotoxicity screening.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c00312