Double-quantum-zero-quantum 2D coherent spectroscopy reveals quantum coherence between collective states in an atomic vapor
We report a novel, to the best of our knowledge, double-quantum-zero-quantum two-dimensional coherent spectroscopy (2DCS) that allows direct detection of the quantum coherence between multiparticle collective states. Through correlating the double-quantum coherence and the zero-quantum coherence, si...
Gespeichert in:
Veröffentlicht in: | Optics letters 2022-02, Vol.47 (4), p.997-1000 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a novel, to the best of our knowledge, double-quantum-zero-quantum two-dimensional coherent spectroscopy (2DCS) that allows direct detection of the quantum coherence between multiparticle collective states. Through correlating the double-quantum coherence and the zero-quantum coherence, signatures for coherence between collective states can be well isolated as side peaks and readily identified in the 2D spectrum. The experiment is implemented in a vapor of rubidium atoms in a collinear 2DCS setup. Good agreement with a theoretical simulation using density matrix confirms the essential role of the interatomic correlation effect in generating the side peak signals. This 2D spectrum technique paves a new avenue for studying the coherent coupling of highly excited states and many-body properties. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.449365 |