Development of cellulosic material-based microchannel device capable of fluorescence immunoassay of microsamples
Microfluidic immunoassay devices are a promising technology that can quickly detect biomarkers with high sensitivity. Recently, many studies implementing this technology on paper substrates have been proposed for improving cost and user-friendliness. However, these studies have identified problems w...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2022-05, Vol.414 (11), p.3419-3428 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microfluidic immunoassay devices are a promising technology that can quickly detect biomarkers with high sensitivity. Recently, many studies implementing this technology on paper substrates have been proposed for improving cost and user-friendliness. However, these studies have identified problems with the large volume of sample required, low sensitivity, and a lack of quantitative accuracy and precision. In this paper, we report a novel structure implemented as a cellulosic material-based microchannel device capable of quantitative immunoassay using small sample volumes. We fabricated microfluidic channels between a transparent cellophane film and water-resistant paper to facilitate loading of small-volume samples and reagents, with a 40-μm-wide immunoreaction matrix constructed in the center of the microchannel using highly precise photolithography. A fluorescence sandwich immunoassay for C-reactive protein (CRP) was successfully implemented that required only a 1-μL sample volume and a 20-min reaction time. We confirmed that the limit of detection of the device was 10–20 ng/mL with a coefficient of variation under 5.6%, which is a performance level comparable to conventional plastic-based human CRP enzyme-linked immunosorbent assay (ELISA) kits. We expect that such devices will lead to the elimination of large amounts of medical waste from the use of ubiquitous diagnostics, a result that is consistent with environmental sustainability goals. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-022-03963-2 |