Toward Reduced Interface Contact Resistance: Controllable Surface Energy of Sb2Te3 Films via Tuning the Crystallization and Orientation
The electrical contact resistance between a metal and semiconductor is one of the keys to improving the output performance of thin-film thermoelectric devices. Herein, we reduced the interface contact resistance by controlling the surface energy of a Sb2Te3 semiconductor via tuning of the crystalliz...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-03, Vol.14 (8), p.10955-10965 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electrical contact resistance between a metal and semiconductor is one of the keys to improving the output performance of thin-film thermoelectric devices. Herein, we reduced the interface contact resistance by controlling the surface energy of a Sb2Te3 semiconductor via tuning of the crystallization and orientation, preparing an intrinsically compact and flat Sb2Te3 film with high surface energy and low roughness, which can give rise to a low average specific contact resistivity (8.2 × 10–6 Ω cm2) with a Ni/Cu metal. The improvement in interface electrical properties is due to the increase in the surface energy and decrease in the surface roughness of the semiconductor surface, which lead to a transformation from three-dimensional island-shaped nucleation to two-dimensional layered nucleation for surface-attached metal films, forming a longitudinally tight connection contact with a low resistance. This approach allows the resistivity to become close to the fundamental theoretically calculated limit. Our work provides a new idea for reducing the contact resistivity of thin-film thermoelectric devices, which is conducive to supporting the development of thermoelectric semiconductor planarization. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c22908 |