Activation of SIRT-1 Signalling in the Prevention of Bipolar Disorder and Related Neurocomplications: Target Activators and Influences on Neurological Dysfunctions
SIRT-1 (silent mating-type information regulation 2 homolog-1) is a protein found in neuronal nuclei, microglia, and astrocyte cells of the brain. It is sometimes referred to as NAD + -dependent deacetylase (nicotinamide adenine dinucleotide). The activation of sirtuins (SIRT-1–7) has been shown to...
Gespeichert in:
Veröffentlicht in: | Neurotoxicity research 2022-04, Vol.40 (2), p.670-686 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SIRT-1 (silent mating-type information regulation 2 homolog-1) is a protein found in neuronal nuclei, microglia, and astrocyte cells of the brain. It is sometimes referred to as NAD + -dependent deacetylase (nicotinamide adenine dinucleotide). The activation of sirtuins (SIRT-1–7) has been shown to protect against a wide range of disorders, including neurodegenerative and neuropsychiatric disorders. SIRT-1 has gained considerable interest from these families because of its early link to long-life expansion and calorie restriction involvement. SIRT-1 is necessary for gene silencing, cell cycle regulation, fat and glucose metabolism, oxidative stress, ageing, and memory formation. In this review, we investigate the role of SIRT-1 downregulation in the progression of bipolar disorder (BD) and neurological abnormalities, as well as related neurological alterations such as genetic dysfunction, neurotransmitter imbalance, oxidative stress-induced apoptosis, and mitochondrial dysfunction. BD is a psychiatric disease distinguished by extreme mood fluctuations that range from depressive lows to manic highs. BD is a complicated disorder with numerous clinical signs and neurocomplications that produce significant behavioural problems. SIRT-1 deficiency in the brain has been demonstrated to affect the activity of its transcription factors and molecular changes, including genetic defects. SIRT-1 is now being studied as a potential therapeutic target for a range of brain disorders. A recent study also found that activating SIRT-1 signalling performs a protective effect in avoiding depression and mania-like behaviours. Furthermore, this review investigates the potential mechanisms by which SIRT-1 regulates neuronal transmission and neurogenesis. As a result of our review, we revealed that SIRT-1 activators have neuroprotective potential in BD and related neurological dysfunctions.
Graphical abstract |
---|---|
ISSN: | 1029-8428 1476-3524 1476-3524 |
DOI: | 10.1007/s12640-022-00480-z |