3D Printed Platelet-Rich Plasma-Loaded Scaffold with Sustained Cytokine Release for Bone Defect Repair
The combination of three-dimensional (3D) printed scaffold materials and various cytokines can achieve the purpose of tissue reconstruction more efficiently. In this study, we prepared platelet-rich plasma (PRP)/gelatin microspheres combined with 3D printed polycaprolactone/β-tricalcium phosphate sc...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2022-08, Vol.28 (15-16), p.7-711 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The combination of three-dimensional (3D) printed scaffold materials and various cytokines can achieve the purpose of tissue reconstruction more efficiently. In this study, we prepared platelet-rich plasma (PRP)/gelatin microspheres combined with 3D printed polycaprolactone/β-tricalcium phosphate scaffolds to solve the key problem that PRP cannot be released under control and the release time is too short, and thus better promote bone repair. Consequently, the composite scaffold displayed a good mechanical property and sustained cytokine release for ∼3 weeks. Increased survival, proliferation, migration, and osteogenic and angiogenic differentiation of bone marrow mesenchymal stem cells were observed compared with the control groups. The
in vivo
study demonstrated that the composite scaffold with PRP/gelatin microspheres led to greater positive effects in promoting large bone defect repair. In conclusion, in this study, a new type of PRP long-term sustained-release composite scaffold material was constructed that effectively improved the survival, proliferation, and differentiation of cells in the transplanted area, thereby better promoting the repair of large bone defects. |
---|---|
ISSN: | 1937-3341 1937-335X |
DOI: | 10.1089/ten.tea.2021.0211 |