Regional respiratory sound abnormalities in pneumothorax and pleural effusion detected via respiratory sound visualization and quantification: case report
Assessment of respiratory sounds by auscultation with a conventional stethoscope is subjective. We developed a continuous monitoring and visualization system that enables objectively and quantitatively visualizing respiratory sounds. We herein present two cases in which the system showed regional di...
Gespeichert in:
Veröffentlicht in: | Journal of clinical monitoring and computing 2022-12, Vol.36 (6), p.1761-1766 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assessment of respiratory sounds by auscultation with a conventional stethoscope is subjective. We developed a continuous monitoring and visualization system that enables objectively and quantitatively visualizing respiratory sounds. We herein present two cases in which the system showed regional differences in the respiratory sounds. We applied our novel continuous monitoring and visualization system to evaluate respiratory abnormalities in patients with acute chest disorders. Respiratory sounds were continuously recorded to assess regional changes in respiratory sound volumes. Because we used this system as a pilot study, the results were not shown in real time and were retrospectively analyzed.
Case 1
An 89-year-old woman was admitted to our hospital for sudden-onset respiratory distress and hypoxia. Chest X-rays revealed left pneumothorax; thus, we drained the thorax. After confirming that the pneumothorax had improved, we attached the continuous monitoring and visualization system. Chest X-rays taken the next day showed exacerbation of the pneumothorax. Visual and quantitative findings showed a decreased respiratory volume in the left lung after 3 h.
Case 2
A 94-year-old woman was admitted to our hospital for dyspnea. Chest X-rays showed a large amount of pleural effusion on the right side. The continuous monitoring and visualization system visually and quantitatively revealed a decreased respiratory volume in the lower right lung field compared with that in the lower left lung field. Our newly developed continuous monitoring and visualization system enabled quantitatively and visually detecting regional differences in respiratory sounds in patients with pneumothorax and pleural effusion. |
---|---|
ISSN: | 1387-1307 1573-2614 |
DOI: | 10.1007/s10877-022-00824-2 |