Crosslinking of Pressure-Sensitive Adhesives with Polymer-Grafted Nanoparticles
Nanocomposite filler particles provide multiple routes to mechanically reinforce pressure-sensitive adhesives (PSAs), as their large surface area to volume ratios provide a means of effectively crosslinking multiple polymer chains. A major advancement could therefore be enabled by the design of a pa...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-02, Vol.14 (7), p.9579-9586 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanocomposite filler particles provide multiple routes to mechanically reinforce pressure-sensitive adhesives (PSAs), as their large surface area to volume ratios provide a means of effectively crosslinking multiple polymer chains. A major advancement could therefore be enabled by the design of a particle architecture that forms multiple physical and chemical interactions with the surrounding polymer matrix, while simultaneously ensuring particle dispersion and preventing particle aggregation. Understanding how such multivalent interactions between a nanoparticle crosslinking point and the PSA polymer affect material mechanical performance would provide both useful scientific knowledge on the mechanical structure–property relationships in polymer composites, as well as a new route to synthesizing useful PSA materials. Herein, we report the use of polymer-grafted nanoparticles (PGNPs) composed of poly(n-butyl acrylate-co-acrylic acid) chains grafted to SiO2 nanoparticle (NP) surfaces to cohesively reinforce PSA films against shear stress without compromising their adhesive properties. The use of acrylic acid-decorated PGNPs allows for ionic crosslinking via metal salt coordination to be used in conjunction with physical entanglement, yielding 33% greater shear resistance and up to 3-fold longer holding times under static load. In addition, the effects of material parameters such as PGNP/crosslinker loading, polymer graft length, and core nanoparticle size on mechanical properties are also explored, providing insights into the use of PGNPs for the rational design of polymer composite-based PSAs. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c22997 |