A data-driven linguistic characterization of hallucinated voices in clinical and non-clinical voice-hearers
Auditory verbal hallucinations (AVHs) are heterogeneous regarding phenomenology and etiology. This has led to the proposal of AVHs subtypes. Distinguishing AVHs subtypes can inform AVHs neurocognitive models and also have implications for clinical practice. A scarcely studied source of heterogeneity...
Gespeichert in:
Veröffentlicht in: | Schizophrenia research 2022-03, Vol.241, p.210-217 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Auditory verbal hallucinations (AVHs) are heterogeneous regarding phenomenology and etiology. This has led to the proposal of AVHs subtypes. Distinguishing AVHs subtypes can inform AVHs neurocognitive models and also have implications for clinical practice. A scarcely studied source of heterogeneity relates to the AVHs linguistic characteristics. Therefore, in this study we investigate whether linguistic features distinguish AVHs subtypes, and whether linguistic AVH-subtypes are associated with phenomenology and voice-hearers' clinical status.
Twenty-one clinical and nineteen non-clinical voice-hearers participated in this study. Participants were instructed to repeat verbatim their AVHs just after experiencing them. AVH-repetitions were audio-recorded and transcribed. AVHs phenomenology was assessed using the Auditory Hallucinations Rating Scale of the Psychotic Symptom Rating Scales. Hierarchical clustering analyses without a priori group dichotomization were performed using quantitative measures of sixteen linguistic features to distinguish sets of AVHs.
A two-AVHs-cluster solution best partitioned the data. AVHs-clusters significantly differed in linguistic features (p |
---|---|
ISSN: | 0920-9964 1573-2509 |
DOI: | 10.1016/j.schres.2022.01.055 |