In Situ Enhancement and Isotopic Labeling of Biogenic Coalbed Methane

Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-03, Vol.56 (5), p.3225-3233
Hauptverfasser: Barnhart, Elliott P, Ruppert, Leslie F, Hiebert, Randy, Smith, Heidi J, Schweitzer, Hannah D, Clark, Arthur C, Weeks, Edwin P, Orem, William H, Varonka, Matthew S, Platt, George, Shelton, Jenna L, Davis, Katherine J, Hyatt, Robert J, McIntosh, Jennifer C, Ashley, Kilian, Ono, Shuhei, Martini, Anna M, Hackley, Keith C, Gerlach, Robin, Spangler, Lee, Phillips, Adrienne J, Barry, Mark, Cunningham, Alfred B, Fields, Matthew W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c05979