Increasing generalizability via the principle of minimum description length

Traditional statistical model evaluation typically relies on goodness-of-fit testing and quantifying model complexity by counting parameters. Both of these practices may result in overfitting and have thereby contributed to the generalizability crisis. The information-theoretic principle of minimum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Behavioral and brain sciences 2022-02, Vol.45, p.e5-e5, Article e5
1. Verfasser: Bonifay, Wes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional statistical model evaluation typically relies on goodness-of-fit testing and quantifying model complexity by counting parameters. Both of these practices may result in overfitting and have thereby contributed to the generalizability crisis. The information-theoretic principle of minimum description length addresses both of these concerns by filtering noise from the observed data and consequently increasing generalizability to unseen data.
ISSN:0140-525X
1469-1825
DOI:10.1017/S0140525X21000467