Highly Sensitive Chemiluminescent Immunoassay of Mycotoxins Using ZIF-8-Derived Yolk-Shell Co Single-Atom Site Catalysts as Superior Fenton-like Probes

Superior to traditional nanoscale catalysts, single-atom site catalysts (SASCs) show such merits as maximal catalysis efficiency and outstanding catalytic activity for the construction of analytical methodological platforms. Hereby, an in situ etching strategy was designed to prepare yolk-shell Co S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-02, Vol.94 (7), p.3400-3407
Hauptverfasser: Ouyang, Hui, Xian, Jiaxin, Gao, Jiaqi, Zhang, Lvxia, Wang, Wenwen, Fu, Zhifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superior to traditional nanoscale catalysts, single-atom site catalysts (SASCs) show such merits as maximal catalysis efficiency and outstanding catalytic activity for the construction of analytical methodological platforms. Hereby, an in situ etching strategy was designed to prepare yolk-shell Co SASCs derived from ZIF-8@SiO nanoparticles. On the basis of direct chemical interactions between precursors and supports, the Co element with isolated atomic dispersion was anchored on ZIF-8@SiO nanoparticles. The Co SASCs possess high Fenton-like activity and thus can catalyze the decomposition of H O to produce massive superoxide radical anions instead of singlet oxygen and hydroxyl radicals. With the activity for producing superoxide radical anion, Co SASCs can greatly improve the chemiluminescent (CL) response of a luminol system by 3133.7 times. Furthermore, the SASCs with active sites of Co-O moieties were utilized as the CL probes for establishment of an immunoassay method for sensitive detection of mycotoxins by adopting aflatoxin B1 as a mode analyte. The quantitation range is 10-1000 pg/mL, and the limit of detection is 0.44 pg/mL (3σ) for aflatoxin B1. The proof-of-principle work elucidates the practicability of direct chemical interactions between precursors and supports for forming SASCs with ultrahigh CL response, which can be extended to the exploitation of more sorts of SASCs for tracing biological binding events.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.1c05557