Novel zinc-silver nanocages for drug delivery and wound healing: Preparation, characterization and antimicrobial activities
[Display omitted] Metal organic framework (MOF)-nanocages (MOF-NCs) in the form of zinc-based nanoparticles (NPs) were synthesized as drug carriers for the purpose of wound healing. The prepared NCs (single and bi-metallic with silver-MOF) were based on zinc and they were loaded with ascorbic acid (...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2022-03, Vol.616, p.121559-121559, Article 121559 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Metal organic framework (MOF)-nanocages (MOF-NCs) in the form of zinc-based nanoparticles (NPs) were synthesized as drug carriers for the purpose of wound healing. The prepared NCs (single and bi-metallic with silver-MOF) were based on zinc and they were loaded with ascorbic acid (vitamin C) as a model drug which accelerates wound healing. The NCs were then investigated by several characterization techniques such as XRD, TEM, FTIR and BET surface area. Furthermore, the release behavior of the loaded ascorbic acid from the developed NCs was measured in phosphate buffer solution (PBS). NCs antibacterial activity was tested against strain of gram-positive bacteria (Staphylococcus aureus ATCC- 29213, Streptococcus pyogenes ATCC-19615 and Bacillus subtilis ATCC-6633), gram-negative bacteria strain (Pseudomonas aeruginosaATCC-27853and Escherichia coli ATCC-25922) and fungi (Candida albicans ATCC-10231).The physicochemical features of the NCs were confirmed by the results obtained from XRD and FTIR measurements. The particle size of the NCs was confirmed to be in the range of 30–50 nm. Prolonged drug release that was combined with impressive antibacterial activities, and good wound healing rates were also recognized for the zinc based NCs in comparison to commonly used Ag NPs. It is concluded that the current NCs are potentially suitable for wound healing and drug delivery applications. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2022.121559 |