Improving bulk RNA-seq classification by transferring gene signature from single cells in acute myeloid leukemia

Abstract The advances in single-cell RNA sequencing (scRNA-seq) technologies enable the characterization of transcriptomic profiles at the cellular level and demonstrate great promise in bulk sample analysis thereby offering opportunities to transfer gene signature from scRNA-seq to bulk data. Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2022-03, Vol.23 (2)
Hauptverfasser: Wang, Ran, Zheng, Xubin, Wang, Jun, Wan, Shibiao, Song, Fangda, Wong, Man Hon, Leung, Kwong Sak, Cheng, Lixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The advances in single-cell RNA sequencing (scRNA-seq) technologies enable the characterization of transcriptomic profiles at the cellular level and demonstrate great promise in bulk sample analysis thereby offering opportunities to transfer gene signature from scRNA-seq to bulk data. However, the gene expression signatures identified from single cells are typically inapplicable to bulk RNA-seq data due to the profiling differences of distinct sequencing technologies. Here, we propose single-cell pair-wise gene expression (scPAGE), a novel method to develop single-cell gene pair signatures (scGPSs) that were beneficial to bulk RNA-seq classification to transfer knowledge across platforms. PAGE was adopted to tackle the challenge of profiling differences. We applied the method to acute myeloid leukemia (AML) and identified the scGPS from mouse scRNA-seq that allowed discriminating between AML and control cells. The scGPS was validated in bulk RNA-seq datasets and demonstrated better performance (average area under the curve [AUC] = 0.96) than the conventional gene expression strategies (average AUC$\le$ 0.88) suggesting its potential in disclosing the molecular mechanism of AML. The scGPS also outperformed its bulk counterpart, which highlighted the benefit of gene signature transfer. Furthermore, we confirmed the utility of scPAGE in sepsis as an example of other disease scenarios. scPAGE leveraged the advantages of single-cell profiles to enhance the analysis of bulk samples revealing great potential of transferring knowledge from single-cell to bulk transcriptome studies.
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bbac002