Encapsulating Electron-Rich Pd NPs with Lewis Acidic MOF: Reconciling the Electron-Preference Conflict of the Catalyst for Cascade Condensation via Nitro Reduction
Cascade reactions take advantage of step-saving and facile operation for obtaining chemicals. Herein, catalytic hydrogenation of nitroarene coupled condensation with β-diketone to afford β-ketoenamines is achieved by an integrated nanocatalyst, Pd-e@UiO-66. The catalyst has the structure of an acid-...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-02, Vol.14 (6), p.7949-7961 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cascade reactions take advantage of step-saving and facile operation for obtaining chemicals. Herein, catalytic hydrogenation of nitroarene coupled condensation with β-diketone to afford β-ketoenamines is achieved by an integrated nanocatalyst, Pd-e@UiO-66. The catalyst has the structure of an acid-rich metal–organic framework (MOF), UiO-66-encapsulated electron-rich Pd nanoparticles, and it reconciles the electron-effect contradiction of cascade catalytic reactions: catalytic hydrogenation requires an electron-rich catalyst, while condensation requires electron-deficient Lewis acid sites. The catalyst showed good activity, high chemoselectivity, and universal applicability for the synthesis of β-ketoenamines using nitroarenes. More than 30 β-ketoenamines have been successfully prepared with up to 99% yield via the methodology of relay catalysis. The catalyst exhibited excellent stability to maintain its catalytic performance for more than five cycles. Furthermore, we conducted an in-depth exploration of the reaction mechanism with theoretical calculations. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c22256 |