Bulk Heterojunction Organic Semiconductor Photoanodes: Tuning Energy Levels to Optimize Electron Injection
The use of a bulk heterojunction of organic semiconductors to drive photoelectrochemical water splitting is an emerging trend; however, the optimum energy levels of the donor and acceptor have not been established for photoanode operation with respect to electrolyte pH. Herein, we prepare a set of d...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-02, Vol.14 (6), p.8191-8198 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8198 |
---|---|
container_issue | 6 |
container_start_page | 8191 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Sekar, Arvindh Moreno-Naranjo, Juan Manuel Liu, Yongpeng Yum, Jun-Ho Darwich, Barbara Primera Cho, Han-Hee Guijarro, Nestor Yao, Liang Sivula, Kevin |
description | The use of a bulk heterojunction of organic semiconductors to drive photoelectrochemical water splitting is an emerging trend; however, the optimum energy levels of the donor and acceptor have not been established for photoanode operation with respect to electrolyte pH. Herein, we prepare a set of donor polymers and non-fullerene acceptors with varying energy levels to probe the effect of photogenerated electron injection into a SnO2-based substrate under sacrificial photo-oxidation conditions. Photocurrent density (for sacrificial oxidation) up to 4.1 mA cm–2 was observed at 1.23 V vs reversible hydrogen electrode in optimized photoanodes. Moreover, we establish that a lower-lying donor polymer leads to improved performance due to both improved exciton separation and better charge collection. Similarly, lower-lying acceptors also give photoanodes with higher photocurrent density but with a later photocurrent onset potential and a narrower range of pH for good operation due to the Nernstian behavior of the SnO2, which leads to a smaller driving force for electron injection at high pH. |
doi_str_mv | 10.1021/acsami.1c21440 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2626892017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626892017</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-e581a4124ea433a9a54012293f8db2385312fe545f49efe7847767914a1d5f3f3</originalsourceid><addsrcrecordid>eNp1kEtLAzEQgIMoWh9Xj5KjCK157sOblvqAQgXreUmzszXrblKTrFB_vautvXmaOXzzwXwInVMyooTRa6WDas2IakaFIHtoQHMhhhmTbH-3C3GEjkOoCUk4I_IQHXFJWZ4nbIDqu655x48Qwbu6szoaZ_HML5U1Gr9Aa7SzZaej8_j5zUWnrCsh3OB5Z41d4okFv1zjKXxCE3B0eLaKpjVfgCcN6Oh72ZOt4Vd7ig4q1QQ4284T9Ho_mY8fh9PZw9P4djpUnJM4BJlRJSgToATnKldSEMpYzqusXDCeSU5ZBVLISuRQQZqJNE3SnApFS1nxip-gy4135d1HByEWrQkamkZZcF0oWMKSLGeEpj062qDauxA8VMXKm1b5dUFJ8dO32PQttn37g4utu1u0UO7wv6A9cLUB-sOidp23_av_2b4Bz2OFxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626892017</pqid></control><display><type>article</type><title>Bulk Heterojunction Organic Semiconductor Photoanodes: Tuning Energy Levels to Optimize Electron Injection</title><source>ACS Publications</source><creator>Sekar, Arvindh ; Moreno-Naranjo, Juan Manuel ; Liu, Yongpeng ; Yum, Jun-Ho ; Darwich, Barbara Primera ; Cho, Han-Hee ; Guijarro, Nestor ; Yao, Liang ; Sivula, Kevin</creator><creatorcontrib>Sekar, Arvindh ; Moreno-Naranjo, Juan Manuel ; Liu, Yongpeng ; Yum, Jun-Ho ; Darwich, Barbara Primera ; Cho, Han-Hee ; Guijarro, Nestor ; Yao, Liang ; Sivula, Kevin</creatorcontrib><description>The use of a bulk heterojunction of organic semiconductors to drive photoelectrochemical water splitting is an emerging trend; however, the optimum energy levels of the donor and acceptor have not been established for photoanode operation with respect to electrolyte pH. Herein, we prepare a set of donor polymers and non-fullerene acceptors with varying energy levels to probe the effect of photogenerated electron injection into a SnO2-based substrate under sacrificial photo-oxidation conditions. Photocurrent density (for sacrificial oxidation) up to 4.1 mA cm–2 was observed at 1.23 V vs reversible hydrogen electrode in optimized photoanodes. Moreover, we establish that a lower-lying donor polymer leads to improved performance due to both improved exciton separation and better charge collection. Similarly, lower-lying acceptors also give photoanodes with higher photocurrent density but with a later photocurrent onset potential and a narrower range of pH for good operation due to the Nernstian behavior of the SnO2, which leads to a smaller driving force for electron injection at high pH.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c21440</identifier><identifier>PMID: 35129962</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Organic Electronic Devices</subject><ispartof>ACS applied materials & interfaces, 2022-02, Vol.14 (6), p.8191-8198</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-e581a4124ea433a9a54012293f8db2385312fe545f49efe7847767914a1d5f3f3</citedby><cites>FETCH-LOGICAL-a330t-e581a4124ea433a9a54012293f8db2385312fe545f49efe7847767914a1d5f3f3</cites><orcidid>0000-0002-4544-4217 ; 0000-0001-8386-2922 ; 0000-0003-2491-4619 ; 0000-0002-5415-6540 ; 0000-0002-3277-8816 ; 0000-0002-8458-0270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c21440$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c21440$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35129962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sekar, Arvindh</creatorcontrib><creatorcontrib>Moreno-Naranjo, Juan Manuel</creatorcontrib><creatorcontrib>Liu, Yongpeng</creatorcontrib><creatorcontrib>Yum, Jun-Ho</creatorcontrib><creatorcontrib>Darwich, Barbara Primera</creatorcontrib><creatorcontrib>Cho, Han-Hee</creatorcontrib><creatorcontrib>Guijarro, Nestor</creatorcontrib><creatorcontrib>Yao, Liang</creatorcontrib><creatorcontrib>Sivula, Kevin</creatorcontrib><title>Bulk Heterojunction Organic Semiconductor Photoanodes: Tuning Energy Levels to Optimize Electron Injection</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The use of a bulk heterojunction of organic semiconductors to drive photoelectrochemical water splitting is an emerging trend; however, the optimum energy levels of the donor and acceptor have not been established for photoanode operation with respect to electrolyte pH. Herein, we prepare a set of donor polymers and non-fullerene acceptors with varying energy levels to probe the effect of photogenerated electron injection into a SnO2-based substrate under sacrificial photo-oxidation conditions. Photocurrent density (for sacrificial oxidation) up to 4.1 mA cm–2 was observed at 1.23 V vs reversible hydrogen electrode in optimized photoanodes. Moreover, we establish that a lower-lying donor polymer leads to improved performance due to both improved exciton separation and better charge collection. Similarly, lower-lying acceptors also give photoanodes with higher photocurrent density but with a later photocurrent onset potential and a narrower range of pH for good operation due to the Nernstian behavior of the SnO2, which leads to a smaller driving force for electron injection at high pH.</description><subject>Organic Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQgIMoWh9Xj5KjCK157sOblvqAQgXreUmzszXrblKTrFB_vautvXmaOXzzwXwInVMyooTRa6WDas2IakaFIHtoQHMhhhmTbH-3C3GEjkOoCUk4I_IQHXFJWZ4nbIDqu655x48Qwbu6szoaZ_HML5U1Gr9Aa7SzZaej8_j5zUWnrCsh3OB5Z41d4okFv1zjKXxCE3B0eLaKpjVfgCcN6Oh72ZOt4Vd7ig4q1QQ4284T9Ho_mY8fh9PZw9P4djpUnJM4BJlRJSgToATnKldSEMpYzqusXDCeSU5ZBVLISuRQQZqJNE3SnApFS1nxip-gy4135d1HByEWrQkamkZZcF0oWMKSLGeEpj062qDauxA8VMXKm1b5dUFJ8dO32PQttn37g4utu1u0UO7wv6A9cLUB-sOidp23_av_2b4Bz2OFxw</recordid><startdate>20220216</startdate><enddate>20220216</enddate><creator>Sekar, Arvindh</creator><creator>Moreno-Naranjo, Juan Manuel</creator><creator>Liu, Yongpeng</creator><creator>Yum, Jun-Ho</creator><creator>Darwich, Barbara Primera</creator><creator>Cho, Han-Hee</creator><creator>Guijarro, Nestor</creator><creator>Yao, Liang</creator><creator>Sivula, Kevin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4544-4217</orcidid><orcidid>https://orcid.org/0000-0001-8386-2922</orcidid><orcidid>https://orcid.org/0000-0003-2491-4619</orcidid><orcidid>https://orcid.org/0000-0002-5415-6540</orcidid><orcidid>https://orcid.org/0000-0002-3277-8816</orcidid><orcidid>https://orcid.org/0000-0002-8458-0270</orcidid></search><sort><creationdate>20220216</creationdate><title>Bulk Heterojunction Organic Semiconductor Photoanodes: Tuning Energy Levels to Optimize Electron Injection</title><author>Sekar, Arvindh ; Moreno-Naranjo, Juan Manuel ; Liu, Yongpeng ; Yum, Jun-Ho ; Darwich, Barbara Primera ; Cho, Han-Hee ; Guijarro, Nestor ; Yao, Liang ; Sivula, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-e581a4124ea433a9a54012293f8db2385312fe545f49efe7847767914a1d5f3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Organic Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekar, Arvindh</creatorcontrib><creatorcontrib>Moreno-Naranjo, Juan Manuel</creatorcontrib><creatorcontrib>Liu, Yongpeng</creatorcontrib><creatorcontrib>Yum, Jun-Ho</creatorcontrib><creatorcontrib>Darwich, Barbara Primera</creatorcontrib><creatorcontrib>Cho, Han-Hee</creatorcontrib><creatorcontrib>Guijarro, Nestor</creatorcontrib><creatorcontrib>Yao, Liang</creatorcontrib><creatorcontrib>Sivula, Kevin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekar, Arvindh</au><au>Moreno-Naranjo, Juan Manuel</au><au>Liu, Yongpeng</au><au>Yum, Jun-Ho</au><au>Darwich, Barbara Primera</au><au>Cho, Han-Hee</au><au>Guijarro, Nestor</au><au>Yao, Liang</au><au>Sivula, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bulk Heterojunction Organic Semiconductor Photoanodes: Tuning Energy Levels to Optimize Electron Injection</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-02-16</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>8191</spage><epage>8198</epage><pages>8191-8198</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The use of a bulk heterojunction of organic semiconductors to drive photoelectrochemical water splitting is an emerging trend; however, the optimum energy levels of the donor and acceptor have not been established for photoanode operation with respect to electrolyte pH. Herein, we prepare a set of donor polymers and non-fullerene acceptors with varying energy levels to probe the effect of photogenerated electron injection into a SnO2-based substrate under sacrificial photo-oxidation conditions. Photocurrent density (for sacrificial oxidation) up to 4.1 mA cm–2 was observed at 1.23 V vs reversible hydrogen electrode in optimized photoanodes. Moreover, we establish that a lower-lying donor polymer leads to improved performance due to both improved exciton separation and better charge collection. Similarly, lower-lying acceptors also give photoanodes with higher photocurrent density but with a later photocurrent onset potential and a narrower range of pH for good operation due to the Nernstian behavior of the SnO2, which leads to a smaller driving force for electron injection at high pH.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35129962</pmid><doi>10.1021/acsami.1c21440</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4544-4217</orcidid><orcidid>https://orcid.org/0000-0001-8386-2922</orcidid><orcidid>https://orcid.org/0000-0003-2491-4619</orcidid><orcidid>https://orcid.org/0000-0002-5415-6540</orcidid><orcidid>https://orcid.org/0000-0002-3277-8816</orcidid><orcidid>https://orcid.org/0000-0002-8458-0270</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-02, Vol.14 (6), p.8191-8198 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2626892017 |
source | ACS Publications |
subjects | Organic Electronic Devices |
title | Bulk Heterojunction Organic Semiconductor Photoanodes: Tuning Energy Levels to Optimize Electron Injection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bulk%20Heterojunction%20Organic%20Semiconductor%20Photoanodes:%20Tuning%20Energy%20Levels%20to%20Optimize%20Electron%20Injection&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Sekar,%20Arvindh&rft.date=2022-02-16&rft.volume=14&rft.issue=6&rft.spage=8191&rft.epage=8198&rft.pages=8191-8198&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c21440&rft_dat=%3Cproquest_cross%3E2626892017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626892017&rft_id=info:pmid/35129962&rfr_iscdi=true |