Bulk Heterojunction Organic Semiconductor Photoanodes: Tuning Energy Levels to Optimize Electron Injection

The use of a bulk heterojunction of organic semiconductors to drive photoelectrochemical water splitting is an emerging trend; however, the optimum energy levels of the donor and acceptor have not been established for photoanode operation with respect to electrolyte pH. Herein, we prepare a set of d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-02, Vol.14 (6), p.8191-8198
Hauptverfasser: Sekar, Arvindh, Moreno-Naranjo, Juan Manuel, Liu, Yongpeng, Yum, Jun-Ho, Darwich, Barbara Primera, Cho, Han-Hee, Guijarro, Nestor, Yao, Liang, Sivula, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of a bulk heterojunction of organic semiconductors to drive photoelectrochemical water splitting is an emerging trend; however, the optimum energy levels of the donor and acceptor have not been established for photoanode operation with respect to electrolyte pH. Herein, we prepare a set of donor polymers and non-fullerene acceptors with varying energy levels to probe the effect of photogenerated electron injection into a SnO2-based substrate under sacrificial photo-oxidation conditions. Photocurrent density (for sacrificial oxidation) up to 4.1 mA cm–2 was observed at 1.23 V vs reversible hydrogen electrode in optimized photoanodes. Moreover, we establish that a lower-lying donor polymer leads to improved performance due to both improved exciton separation and better charge collection. Similarly, lower-lying acceptors also give photoanodes with higher photocurrent density but with a later photocurrent onset potential and a narrower range of pH for good operation due to the Nernstian behavior of the SnO2, which leads to a smaller driving force for electron injection at high pH.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c21440