Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics
Antagonistic antibodies targeting the inhibitory immune-checkpoint receptor PD-1 or its ligand PD-L1 are used to treat a wide range of cancer types and can substantially improve patient survival. Nevertheless, strategies to overcome intrinsic and acquired resistance are required to respectively incr...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Clinical oncology 2022-05, Vol.19 (5), p.287-305 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antagonistic antibodies targeting the inhibitory immune-checkpoint receptor PD-1 or its ligand PD-L1 are used to treat a wide range of cancer types and can substantially improve patient survival. Nevertheless, strategies to overcome intrinsic and acquired resistance are required to respectively increase response rates and durations. PD-L1 is often upregulated in various malignancies, and emerging evidence suggests numerous underlying mechanisms involving distinct oncogenic signalling pathways. Thus, specific small-molecule inhibitors have the potential to simultaneously suppress not only a key oncogenic signalling pathway but also PD-L1 expression and/or activity in particular cancers, thereby presenting attractive candidate drugs for combination with existing immune-checkpoint inhibitors and/or other targeted agents. Herein, we summarize advances in understanding the mechanisms regulating PD-L1 expression at the transcriptional, post-transcriptional, translational and post-translational levels in cancers. We describe the roles of the diverse post-translational modifications of PD-L1, including phosphorylation, palmitoylation, glycosylation, acetylation and ubiquitination. Moreover, we discuss the potential use of small-molecule agents to modulate these mechanisms as well as of predictive biomarkers to stratify patients for optimal treatment, and provide our perspective on potential therapeutic strategies to circumvent resistance to conventional anti-PD-1/PD-L1 antibodies.
Antibodies targeting PD-1 or its ligand PD-L1 have revolutionized cancer therapy. Increased understanding of the mechanisms regulating PD-L1 has revealed links with several important oncogenic signalling pathways. Herein, the authors review the transcriptional, post-transcriptional and translational regulation of PD-L1 expression in cancers as well as the diverse post-translational modifications, including phosphorylation, palmitoylation, glycosylation, acetylation and ubiquitination, that affect PD-L1 stability and activity. They also discuss the possibility to simultaneously target key oncogenic pathways and modulate PD-L1 expression using small-molecule agents, which have potential advantages over or might synergize with anti-PD-1/PD-L1 antibodies.
Key points
Besides its localization on the cell membrane, PD-L1 can also be detected in the extracellular space or nucleus, where it has crucial roles in regulating immune evasion and tumorigenesis through PD-1-dependent or PD-1-independent |
---|---|
ISSN: | 1759-4774 1759-4782 |
DOI: | 10.1038/s41571-022-00601-9 |