Getting more out of the zebrafish light dark transition test

In (eco-)toxicological studies the light/dark transition (LDT) test is one of the most frequently used behaviour assays with zebrafish eleutheroembryos. However, study results vary regarding data presentation and analysis and mostly focus on a limited amount of the recorded data. In this study, we i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2022-05, Vol.295, p.133863-133863, Article 133863
Hauptverfasser: Haigis, Ann-Cathrin, Ottermanns, Richard, Schiwy, Andreas, Hollert, Henner, Legradi, Jessica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In (eco-)toxicological studies the light/dark transition (LDT) test is one of the most frequently used behaviour assays with zebrafish eleutheroembryos. However, study results vary regarding data presentation and analysis and mostly focus on a limited amount of the recorded data. In this study, we investigated whether monitoring two behavioural outcomes (time and distance moved) together with analysing multiple parameters can improve test sensitivity and data interpretation. As a proof of principle 5-day old zebrafish (Danio rerio) eleutheroembryos exposed to either endocrine disruptors (EDs) or acetylcholine esterase (AChE) inhibitors were investigated. We analysed conventional parameters such as mean and sum and implemented additional endpoints such as minimum or maximum distance moved and new parameters assessing the bursting response of eleutheroembryos. Furthermore, changes in eleutheroembryonic behaviour during the moment of the light to dark transition were added. To improve data presentation control-normalised results were displayed in radar charts, enabling the simultaneous presentation of different parameters in relation to each other. This enabled us to identify parameters most relevant to a certain behavioural response. A cut off threshold using control data was applied to identify parameters that were altered in a biological relevant manner. Our approach was able to detect effects on different parameters that remained undetected when analysis was done using conventional bar graphs on - in most cases analysed - averaged, mean distance moved values. By combining the radar charts with additional parameters and by using control-based thresholds, we were able to increase the test sensitivity and promote a deeper understanding of the behaviour response of zebrafish eleutheroembryos in the LDT test and thereby increased its usability for behavioural toxicity studies. [Display omitted] •Integration of multiple parameters can aid mechanistic understanding•Approach enabled distinction between different substance classes•Better characterisation of behavioural response during light period•Radar charts improve LDT data representation and interpretation
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2022.133863