Effects of Exopolysaccharides from Lactiplantibacillus plantarum JLAU103 on Intestinal Immune Response, Oxidative Stress, and Microbial Communities in Cyclophosphamide-Induced Immunosuppressed Mice

This study investigated the effects of the exopolysaccharide from JLAU103 (EPS103) on the intestinal immune response, oxidative stress, intestinal mucosal barrier, and microbial community in cyclophosphamide-induced immune-suppressed mice. The results showed that EPS103 promoted the secretion of cyt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2022-02, Vol.70 (7), p.2197-2210
Hauptverfasser: Wang, Ji, Li, Meihe, Gao, Yawen, Li, Hongmei, Fang, Li, Liu, Chunlei, Liu, Xiaoting, Min, Weihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the effects of the exopolysaccharide from JLAU103 (EPS103) on the intestinal immune response, oxidative stress, intestinal mucosal barrier, and microbial community in cyclophosphamide-induced immune-suppressed mice. The results showed that EPS103 promoted the secretion of cytokines and the generation of secretory immunoglobulin A and mucin-2 in the small intestine of mice, which might be related to the activation of the MAPK pathway. Additionally, EPS103 protected against oxidative stress by activating antioxidation enzymes and Nrf2/Keap1 pathways. It also improved the intestinal physical barrier functions regulating the ratio of villous height to crypt depth and upregulating the expression of tight-junction proteins. Meanwhile, EPS103 promoted the generation of short-chain fatty acids (SCFAs) and modulated the constituents of gut microbiota. These results suggested that EPS103 may modulate the intestinal immunoresponse relying on the regulation of SCFA production and gut microbiota in immunosuppressed mice, resulting in the activation of systemic immunity.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.1c06502