Midwavelength Infrared Colloidal Nanowire Laser

Realizing bright colloidal infrared emitters in the midwavelength infrared (or mid-IR), which can be used for low-power IR light-emitting diodes (LEDs), sensors, and deep-tissue imaging, has been a challenge for the last few decades. Here, we present colloidal tellurium nanowires with strong emissio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-02, Vol.13 (6), p.1431-1437
Hauptverfasser: Kim, Gahyeon, Choi, Dongsun, Chae, Soo Yeon, Bera, Rajesh, Park, Seongchul, Lee, Junho, Min, Su Hyeon, Choi, Han-Kyu, Kim, Juyeong, Huh, Joonsuk, Choi, Kihang, Lim, Manho, Kim, Hugh I, Cho, Minhaeng, Jeong, Kwang Seob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Realizing bright colloidal infrared emitters in the midwavelength infrared (or mid-IR), which can be used for low-power IR light-emitting diodes (LEDs), sensors, and deep-tissue imaging, has been a challenge for the last few decades. Here, we present colloidal tellurium nanowires with strong emission intensity at room temperature and even lasing at 3.6 μm (ω) under cryotemperature. Furthermore, the second-harmonic field at 1.8 μm (2ω) and the third-harmonic field at 1.2 μm (3ω) are successfully generated thanks to the intrinsic property of the tellurium nanowire. These unique optical features have never been reported for colloidal tellurium nanocrystals. With the colloidal midwavelength infrared (MWIR) Te nanowire laser, we demonstrate its potential in biomedical applications. MWIR lasing has been clearly observed from nanowires embedded in a human neuroblastoma cell, which could further realize deep-tissue imaging and thermotherapy in the near future.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.1c04154