On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients
Implicit difference schemes of O( k 4 + k 2 h 2 + h 4), where k0, h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropri...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 1996-08, Vol.72 (2), p.421-431 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 2 |
container_start_page | 421 |
container_title | Journal of computational and applied mathematics |
container_volume | 72 |
creator | Mohanty, R.K. Jain, M.K. George, Kochurani |
description | Implicit difference schemes of
O(
k
4 +
k
2
h
2 +
h
4), where
k0,
h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods. |
doi_str_mv | 10.1016/0377-0427(96)00011-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26250291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0377042796000118</els_id><sourcerecordid>26250291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-9cbe10fa30955359a35c8be61787f1e32bbd8a07a18a777b6cb28ea7e3eb37013</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpoNukb9CDDiE0ByeStbakSyCEpi0EcknPQpJHtYpX2mi0KfsSeeba3SXHnoaB7_-H-Qj5zNkVZ7y_ZkLKhq1b-UX3l4wxzhv1jqy4krrhUqr3ZPWGfCAfEX_PUK_5ekVeHxOtI9AdAs2BjvHXSHMZoNAhhgAFkge6gTrmAWnI5R-Me6ywWfic5m1rZwbB5zQcsymnKSawhY77LRSXp-gpPO9sjTkh_RPrSF9sidZNQH2GEKKPkCqekZNgJ4RPx3lKft5_fbr73jw8fvtxd_vQ-DVntdHeAWfBCqa7TnTais4rBz2XSgYOonVuUJZJy5WVUrreu1aBlSDACcm4OCUXh95tyc87wGo2ET1Mk02Qd2javu1YqxdwfQB9yYgFgtmWuLFlbzgzi3yzmDWLWaPnZZFv1Bw7P_Zb9HYKxSYf8S0ruOyFXrCbAwbzry8RisHFg4chFvDVDDn-_85fIMea-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26250291</pqid></control><display><type>article</type><title>On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Mohanty, R.K. ; Jain, M.K. ; George, Kochurani</creator><creatorcontrib>Mohanty, R.K. ; Jain, M.K. ; George, Kochurani</creatorcontrib><description>Implicit difference schemes of
O(
k
4 +
k
2
h
2 +
h
4), where
k0,
h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/0377-0427(96)00011-8</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Difference and functional equations, recurrence relations ; Difference method ; Exact sciences and technology ; Hyperbolic equation ; Linear stability ; Mathematics ; Maximum absolute errors ; Nonlinear wave equation ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Polar coordinates ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 1996-08, Vol.72 (2), p.421-431</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-9cbe10fa30955359a35c8be61787f1e32bbd8a07a18a777b6cb28ea7e3eb37013</citedby><cites>FETCH-LOGICAL-c410t-9cbe10fa30955359a35c8be61787f1e32bbd8a07a18a777b6cb28ea7e3eb37013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0377-0427(96)00011-8$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3176398$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohanty, R.K.</creatorcontrib><creatorcontrib>Jain, M.K.</creatorcontrib><creatorcontrib>George, Kochurani</creatorcontrib><title>On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients</title><title>Journal of computational and applied mathematics</title><description>Implicit difference schemes of
O(
k
4 +
k
2
h
2 +
h
4), where
k0,
h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods.</description><subject>Difference and functional equations, recurrence relations</subject><subject>Difference method</subject><subject>Exact sciences and technology</subject><subject>Hyperbolic equation</subject><subject>Linear stability</subject><subject>Mathematics</subject><subject>Maximum absolute errors</subject><subject>Nonlinear wave equation</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Polar coordinates</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVpoNukb9CDDiE0ByeStbakSyCEpi0EcknPQpJHtYpX2mi0KfsSeeba3SXHnoaB7_-H-Qj5zNkVZ7y_ZkLKhq1b-UX3l4wxzhv1jqy4krrhUqr3ZPWGfCAfEX_PUK_5ekVeHxOtI9AdAs2BjvHXSHMZoNAhhgAFkge6gTrmAWnI5R-Me6ywWfic5m1rZwbB5zQcsymnKSawhY77LRSXp-gpPO9sjTkh_RPrSF9sidZNQH2GEKKPkCqekZNgJ4RPx3lKft5_fbr73jw8fvtxd_vQ-DVntdHeAWfBCqa7TnTais4rBz2XSgYOonVuUJZJy5WVUrreu1aBlSDACcm4OCUXh95tyc87wGo2ET1Mk02Qd2javu1YqxdwfQB9yYgFgtmWuLFlbzgzi3yzmDWLWaPnZZFv1Bw7P_Zb9HYKxSYf8S0ruOyFXrCbAwbzry8RisHFg4chFvDVDDn-_85fIMea-Q</recordid><startdate>19960813</startdate><enddate>19960813</enddate><creator>Mohanty, R.K.</creator><creator>Jain, M.K.</creator><creator>George, Kochurani</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960813</creationdate><title>On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients</title><author>Mohanty, R.K. ; Jain, M.K. ; George, Kochurani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-9cbe10fa30955359a35c8be61787f1e32bbd8a07a18a777b6cb28ea7e3eb37013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Difference and functional equations, recurrence relations</topic><topic>Difference method</topic><topic>Exact sciences and technology</topic><topic>Hyperbolic equation</topic><topic>Linear stability</topic><topic>Mathematics</topic><topic>Maximum absolute errors</topic><topic>Nonlinear wave equation</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Polar coordinates</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, R.K.</creatorcontrib><creatorcontrib>Jain, M.K.</creatorcontrib><creatorcontrib>George, Kochurani</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanty, R.K.</au><au>Jain, M.K.</au><au>George, Kochurani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>1996-08-13</date><risdate>1996</risdate><volume>72</volume><issue>2</issue><spage>421</spage><epage>431</epage><pages>421-431</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>Implicit difference schemes of
O(
k
4 +
k
2
h
2 +
h
4), where
k0,
h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-0427(96)00011-8</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 1996-08, Vol.72 (2), p.421-431 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_26250291 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Difference and functional equations, recurrence relations Difference method Exact sciences and technology Hyperbolic equation Linear stability Mathematics Maximum absolute errors Nonlinear wave equation Numerical analysis Numerical analysis. Scientific computation Partial differential equations, initial value problems and time-dependant initial-boundary value problems Polar coordinates Sciences and techniques of general use |
title | On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20use%20of%20high%20order%20difference%20methods%20for%20the%20system%20of%20one%20space%20second%20order%20nonlinear%20hyperbolic%20equations%20with%20variable%20coefficients&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Mohanty,%20R.K.&rft.date=1996-08-13&rft.volume=72&rft.issue=2&rft.spage=421&rft.epage=431&rft.pages=421-431&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/0377-0427(96)00011-8&rft_dat=%3Cproquest_cross%3E26250291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26250291&rft_id=info:pmid/&rft_els_id=0377042796000118&rfr_iscdi=true |