On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients

Implicit difference schemes of O( k 4 + k 2 h 2 + h 4), where k0, h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 1996-08, Vol.72 (2), p.421-431
Hauptverfasser: Mohanty, R.K., Jain, M.K., George, Kochurani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 2
container_start_page 421
container_title Journal of computational and applied mathematics
container_volume 72
creator Mohanty, R.K.
Jain, M.K.
George, Kochurani
description Implicit difference schemes of O( k 4 + k 2 h 2 + h 4), where k0, h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods.
doi_str_mv 10.1016/0377-0427(96)00011-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26250291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0377042796000118</els_id><sourcerecordid>26250291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-9cbe10fa30955359a35c8be61787f1e32bbd8a07a18a777b6cb28ea7e3eb37013</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpoNukb9CDDiE0ByeStbakSyCEpi0EcknPQpJHtYpX2mi0KfsSeeba3SXHnoaB7_-H-Qj5zNkVZ7y_ZkLKhq1b-UX3l4wxzhv1jqy4krrhUqr3ZPWGfCAfEX_PUK_5ekVeHxOtI9AdAs2BjvHXSHMZoNAhhgAFkge6gTrmAWnI5R-Me6ywWfic5m1rZwbB5zQcsymnKSawhY77LRSXp-gpPO9sjTkh_RPrSF9sidZNQH2GEKKPkCqekZNgJ4RPx3lKft5_fbr73jw8fvtxd_vQ-DVntdHeAWfBCqa7TnTais4rBz2XSgYOonVuUJZJy5WVUrreu1aBlSDACcm4OCUXh95tyc87wGo2ET1Mk02Qd2javu1YqxdwfQB9yYgFgtmWuLFlbzgzi3yzmDWLWaPnZZFv1Bw7P_Zb9HYKxSYf8S0ruOyFXrCbAwbzry8RisHFg4chFvDVDDn-_85fIMea-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26250291</pqid></control><display><type>article</type><title>On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Mohanty, R.K. ; Jain, M.K. ; George, Kochurani</creator><creatorcontrib>Mohanty, R.K. ; Jain, M.K. ; George, Kochurani</creatorcontrib><description>Implicit difference schemes of O( k 4 + k 2 h 2 + h 4), where k0, h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/0377-0427(96)00011-8</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Difference and functional equations, recurrence relations ; Difference method ; Exact sciences and technology ; Hyperbolic equation ; Linear stability ; Mathematics ; Maximum absolute errors ; Nonlinear wave equation ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Polar coordinates ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 1996-08, Vol.72 (2), p.421-431</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-9cbe10fa30955359a35c8be61787f1e32bbd8a07a18a777b6cb28ea7e3eb37013</citedby><cites>FETCH-LOGICAL-c410t-9cbe10fa30955359a35c8be61787f1e32bbd8a07a18a777b6cb28ea7e3eb37013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0377-0427(96)00011-8$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3176398$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohanty, R.K.</creatorcontrib><creatorcontrib>Jain, M.K.</creatorcontrib><creatorcontrib>George, Kochurani</creatorcontrib><title>On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients</title><title>Journal of computational and applied mathematics</title><description>Implicit difference schemes of O( k 4 + k 2 h 2 + h 4), where k0, h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods.</description><subject>Difference and functional equations, recurrence relations</subject><subject>Difference method</subject><subject>Exact sciences and technology</subject><subject>Hyperbolic equation</subject><subject>Linear stability</subject><subject>Mathematics</subject><subject>Maximum absolute errors</subject><subject>Nonlinear wave equation</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Polar coordinates</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVpoNukb9CDDiE0ByeStbakSyCEpi0EcknPQpJHtYpX2mi0KfsSeeba3SXHnoaB7_-H-Qj5zNkVZ7y_ZkLKhq1b-UX3l4wxzhv1jqy4krrhUqr3ZPWGfCAfEX_PUK_5ekVeHxOtI9AdAs2BjvHXSHMZoNAhhgAFkge6gTrmAWnI5R-Me6ywWfic5m1rZwbB5zQcsymnKSawhY77LRSXp-gpPO9sjTkh_RPrSF9sidZNQH2GEKKPkCqekZNgJ4RPx3lKft5_fbr73jw8fvtxd_vQ-DVntdHeAWfBCqa7TnTais4rBz2XSgYOonVuUJZJy5WVUrreu1aBlSDACcm4OCUXh95tyc87wGo2ET1Mk02Qd2javu1YqxdwfQB9yYgFgtmWuLFlbzgzi3yzmDWLWaPnZZFv1Bw7P_Zb9HYKxSYf8S0ruOyFXrCbAwbzry8RisHFg4chFvDVDDn-_85fIMea-Q</recordid><startdate>19960813</startdate><enddate>19960813</enddate><creator>Mohanty, R.K.</creator><creator>Jain, M.K.</creator><creator>George, Kochurani</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960813</creationdate><title>On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients</title><author>Mohanty, R.K. ; Jain, M.K. ; George, Kochurani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-9cbe10fa30955359a35c8be61787f1e32bbd8a07a18a777b6cb28ea7e3eb37013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Difference and functional equations, recurrence relations</topic><topic>Difference method</topic><topic>Exact sciences and technology</topic><topic>Hyperbolic equation</topic><topic>Linear stability</topic><topic>Mathematics</topic><topic>Maximum absolute errors</topic><topic>Nonlinear wave equation</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Polar coordinates</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, R.K.</creatorcontrib><creatorcontrib>Jain, M.K.</creatorcontrib><creatorcontrib>George, Kochurani</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanty, R.K.</au><au>Jain, M.K.</au><au>George, Kochurani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>1996-08-13</date><risdate>1996</risdate><volume>72</volume><issue>2</issue><spage>421</spage><epage>431</epage><pages>421-431</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>Implicit difference schemes of O( k 4 + k 2 h 2 + h 4), where k0, h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-0427(96)00011-8</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 1996-08, Vol.72 (2), p.421-431
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_26250291
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Difference and functional equations, recurrence relations
Difference method
Exact sciences and technology
Hyperbolic equation
Linear stability
Mathematics
Maximum absolute errors
Nonlinear wave equation
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Polar coordinates
Sciences and techniques of general use
title On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20use%20of%20high%20order%20difference%20methods%20for%20the%20system%20of%20one%20space%20second%20order%20nonlinear%20hyperbolic%20equations%20with%20variable%20coefficients&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Mohanty,%20R.K.&rft.date=1996-08-13&rft.volume=72&rft.issue=2&rft.spage=421&rft.epage=431&rft.pages=421-431&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/0377-0427(96)00011-8&rft_dat=%3Cproquest_cross%3E26250291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26250291&rft_id=info:pmid/&rft_els_id=0377042796000118&rfr_iscdi=true