On the use of high order difference methods for the system of one space second order nonlinear hyperbolic equations with variable coefficients
Implicit difference schemes of O( k 4 + k 2 h 2 + h 4), where k0, h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropri...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 1996-08, Vol.72 (2), p.421-431 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Implicit difference schemes of
O(
k
4 +
k
2
h
2 +
h
4), where
k0,
h 0 are grid sizes in time and space coordinates respectively, are developed for the efficient numerical integration of the system of one space second order nonlinear hyperbolic equations with variable coefficients subject to appropriate initial and Dirichlet boundary conditions. The proposed difference method for a scalar equation is applied for the wave equation in cylindrical and spherical symmetry. The numerical examples are given to illustrate the fourth order convergence of the methods. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/0377-0427(96)00011-8 |