Achieving a Record-High Capacitive Energy Density on Si with Columnar Nanograined Ferroelectric Films
High energy density dielectric film capacitors are desirable in modern electronic devices. Their miniaturization and integration into Si-based microsystems create opportunities for in-circuit energy supply, buffering, and conditioning. Here, we present a CMOS (complementary metal oxide semiconductor...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-02, Vol.14 (6), p.7805-7813 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High energy density dielectric film capacitors are desirable in modern electronic devices. Their miniaturization and integration into Si-based microsystems create opportunities for in-circuit energy supply, buffering, and conditioning. Here, we present a CMOS (complementary metal oxide semiconductor)-compatible route for the fabrication of BaTiO3 film capacitors on Si with a record-high recoverable energy density and good efficiency (∼242 J/cm3 and ∼76% at 8.75 MV/cm). These BaTiO3 films were sputter-deposited at 350 °C and consisted of slightly compressed superfine columnar nanograins with a (001) texture. Such a nanostructure was endowed with a high breakdown strength, a reduced remnant polarization, and an enhanced maximum polarization, which are accountable for their excellent energy storage performance. Moreover, these BaTiO3 film capacitors displayed a high electrical fatigue resistance, a wide range of operating temperatures, and an excellent frequency stability. With an engineered nanostructure, the prototype perovskite of BaTiO3 has shown great promise for capacitive energy storage applications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c19197 |